Patents by Inventor Isaac Kinde
Isaac Kinde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230250483Abstract: The recently developed liquid-based Papanicolaou (Pap) smear allows not only cytologic evaluation but also collection of DNA for detection of HPV, the causative agent of cervical cancer. We tested these samples to detect somatic mutations present in rare tumor cells that might accumulate in the cervix once shed from endometrial and ovarian cancers. A panel of commonly mutated genes in endometrial and ovarian cancers was assembled and used to identify mutations in all 46 endometrial or cervical cancer tissue samples. We were able also able to identify the same mutations in the DNA from liquid Pap smears in 100% of endometrial cancers (24 of 24) and in 41% of ovarian cancers (9 of 22). We developed a sequence-based method to query mutations in 12 genes in a single liquid Pap smear without prior knowledge of the tumor's genotype.Type: ApplicationFiled: October 28, 2022Publication date: August 10, 2023Inventors: Isaac Kinde, Kenneth W. Kinzler, Bert Vogelstein, Nickolas Papadopoulos, Luis Diaz, Chetan Bettegowda, Yuxuan Wang
-
Patent number: 11525163Abstract: The recently developed liquid-based Papanicolaou (Pap) smear allows not only cytologic evaluation but also collection of DNA for detection of HPV, the causative agent of cervical cancer. We tested these samples to detect somatic mutations present in rare tumor cells that might accumulate in the cervix once shed from endometrial and ovarian cancers. A panel of commonly mutated genes in endometrial and ovarian cancers was assembled and used to identify mutations in all 46 endometrial or cervical cancer tissue samples. We were able also able to identify the same mutations in the DNA from liquid Pap smears in 100% of endometrial cancers (24 of 24) and in 41% of ovarian cancers (9 of 22). We developed a sequence-based method to query mutations in 12 genes in a single liquid Pap smear without prior knowledge of the tumor's genotype.Type: GrantFiled: October 17, 2013Date of Patent: December 13, 2022Assignee: The Johns Hopkins UniversityInventors: Isaac Kinde, Kenneth W. Kinzler, Bert Vogelstein, Nickolas Papadopoulos, Luis Diaz, Chetan Bettegowda, Yuxuan Wang
-
Patent number: 11180803Abstract: Though massively parallel sequencing instruments are in principle well-suited to the task of identification of mutations present in a small fraction of DNA templates, the error rates in such instruments are generally too high to allow confident identification of rare variants. An approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose is called “Safe-SeqS” for (Safe-Sequencing System) and includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.Type: GrantFiled: August 18, 2016Date of Patent: November 23, 2021Assignee: The Johns Hopkins UniversityInventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac Kinde
-
Publication number: 20170051347Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.Type: ApplicationFiled: August 18, 2016Publication date: February 23, 2017Applicant: The Johns Hopkins UniversityInventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac Kinde
-
Patent number: 9487829Abstract: Error rates in massively parallel sequencing instruments are generally too high to allow confident identification of rare variants. An approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation. We illustrate the utility of this approach for determining the fidelity of a polymerase, the accuracy of oligonucleotides synthesized in vitro, and the prevalence of mutations in the nuclear and mitochondrial genomes of normal cells.Type: GrantFiled: July 30, 2015Date of Patent: November 8, 2016Assignee: The Johns Hopkins UniversityInventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac Kinde
-
Patent number: 9476095Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.Type: GrantFiled: April 12, 2012Date of Patent: October 25, 2016Assignee: The Johns Hopkins UniversityInventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac Kinde
-
Publication number: 20160215333Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.Type: ApplicationFiled: April 5, 2016Publication date: July 28, 2016Applicant: The Johns Hopkins UniversityInventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac Kinde
-
Publication number: 20150292027Abstract: The recently developed liquid-based Papanicolaou (Pap) smear allows not only cytologic evaluation but also collection of DNA for detection of HPV, the causative agent of cervical cancer. We tested these samples to detect somatic mutations present in rare tumor cells that might accumulate in the cervix once shed from endometrial and ovarian cancers. A panel of commonly mutated genes in endometrial and ovarian cancers was assembled and used to identify mutations in all 46 endometrial or cervical cancer tissue samples. We were able also able to identify the same mutations in the DNA from liquid Pap smears in 100% of endometrial cancers (24 of 24) and in 41% of ovarian cancers (9 of 22). We developed a sequence-based method to query mutations in 12 genes in a single liquid Pap smear without prior knowledge of the tumor's genotype.Type: ApplicationFiled: October 17, 2013Publication date: October 15, 2015Applicant: THE JOHNS HOPKINS UNIVERSITYInventors: Isaac Kinde, Kenneth W. Kinzler, Bert Vogelstein, Nickolas Papadopoulos, Luis Diaz, Chetan Bettegowda, Yuxuan Wang
-
Publication number: 20140227705Abstract: The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Though massively parallel sequencing instruments are in principle well-suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. One example of this approach, called “Safe-SeqS” for (Safe-Sequencing System) includes (i) assignment of a unique identifier (UID) to each template molecule; (ii) amplification of each uniquely tagged template molecule to create UID-families; and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are truly mutant (“super-mutants”) if ?95% of them contain the identical mutation.Type: ApplicationFiled: April 12, 2012Publication date: August 14, 2014Applicant: THE JOHNS HOPKINS UNIVERSITYInventors: Bert Vogelstein, Kenneth W. Kinzler, Nickolas Papadopoulos, Isaac Kinde