Patents by Inventor Isabel Otto

Isabel Otto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200388734
    Abstract: A method of manufacturing semiconductor device includes providing a radiation emitting semiconductor chip having a first main surface, applying a metallic seed layer to a second main surface opposite the first main surface, galvanically depositing first and second metallic volume regions on the seed layer, depositing an adhesion promoting layer on the volume regions, and applying a casting compound at least between contact points, wherein before the metallic volume regions are galvanically deposited, a dielectric layer is first applied to the seed layer over its entire surface and openings are produced in the dielectric layer by etching, and a material of the metallic volume regions is deposited through the openings of the dielectric layer, wherein the dielectric layer is underetched at boundaries to the openings and the underetches are filled with material of the metallic volume regions during the galvanical depositing of the metallic volume regions.
    Type: Application
    Filed: May 8, 2018
    Publication date: December 10, 2020
    Inventors: Isabel Otto, Anna Kasprzak-Zablocka, Christian Leirer
  • Publication number: 20200220056
    Abstract: A method for producing an optoelectronic semiconductor component and an optoelectronic semiconductor component are disclosed. In an embodiment a method include providing a semiconductor layer sequence having an active region and a plurality of emission regions, forming a plurality of first contact points, filling spacings between the first contact points with a molding compound, removing a growth substrate of the semiconductor layer sequence and arranging the semiconductor layer sequence on a connection carrier comprising a control circuit and a plurality of connection surfaces, wherein each of the first contact points is electrically conductively connected to a connection surface, wherein the emission regions are independently controllable by the control circuit, and wherein the molding compound serves as a temporary auxiliary carrier that mechanically stabilizes the semiconductor layer sequence during the removal of the growth substrate.
    Type: Application
    Filed: April 3, 2018
    Publication date: July 9, 2020
    Inventors: Isabel Otto, Christian Leirer
  • Publication number: 20200194612
    Abstract: A method of manufacturing an optoelectronic semiconductor chip includes a) providing a semiconductor layer sequence having an active region that generates or receives radiation on a substrate; b) forming at least one recess extending through the active region; c) forming a metallic reinforcement layer on the semiconductor layer sequence by galvanic deposition, the metallic reinforcement layer completely covering the semiconductor layer sequence and at least partially filling the recess; and d) removing the substrate, wherein the metallic reinforcement layer is leveled on a side facing away from the semiconductor layer sequence.
    Type: Application
    Filed: March 21, 2018
    Publication date: June 18, 2020
    Inventors: Isabel Otto, Christian Leirer
  • Publication number: 20200168505
    Abstract: A semiconductor chip, a method for producing a semiconductor chip and an apparatus having a plurality of semiconductor chips are disclosed. In an embodiment a chip includes a substrate and a semiconductor layer arranged at the substrate, wherein the substrate includes, at a side facing the semiconductor layer, a top side with a width B1 in a first lateral direction and, at a side opposite to the top side, a bottom side with a width B3 in the first lateral direction, wherein the substrate has a width B2 in the first lateral direction at a half height between the top side and the bottom side, and wherein the following applies to widths B1, B2 and B3: B1-B2<B2-B3, and B1?B2>B3.
    Type: Application
    Filed: June 21, 2017
    Publication date: May 28, 2020
    Inventors: Isabel Otto, Patrick Rode
  • Publication number: 20200168767
    Abstract: A semiconductor component may include a semiconductor body having a first semiconductor layer and a second semiconductor layer, a first main face and a second main face, opposite from the first main face, the first main face being formed by a surface of the first semiconductor layer and the second main face being formed by a surface of the second semiconductor layer. At least one side face may join the first main face to the second main face, an electrically conducting carrier layer, which covers the second main face at least in certain regions and extends from the second main face to at least one side face of the semiconductor body. An electrically conducting continuous deformation layer may cover the second main face at least in certain regions. The electrically conducting deformation layer may have an elasticity that is identical to or higher than the electrically conducting carrier layer.
    Type: Application
    Filed: May 17, 2018
    Publication date: May 28, 2020
    Inventors: Isabel OTTO, Anna KASPRZAK-ZABLOCKA, Christian LEIRER, Berthold HAHN
  • Publication number: 20200152534
    Abstract: A semiconductor component may have a semiconductor body, an electrically conductive carrier layer, and an electrically poorly conductive insulation. The semiconductor body may include a first semiconductor layer and a second semiconductor layer, a first main face and a second main face, situated opposite the first main face, wherein the first main face is formed by a surface of the first semiconductor layer and the second main face is formed by a surface of the second semiconductor layer. The electrically conductive carrier layer may regionally cover the second main face the carrier layer is structured in such a way that it has at least one contact-free depression. The insulation may be located between the carrier layer and the semiconductor body and covers at least part of the second main face and extends up to at least one lateral face of the semiconductor body.
    Type: Application
    Filed: May 17, 2018
    Publication date: May 14, 2020
    Inventors: Christian LEIRER, Christian MUELLER, Isabel OTTO
  • Publication number: 20200152568
    Abstract: A semiconductor component may have a semiconductor body and an electrically conductive carrier layer. The semiconductor body may include a first semiconductor layer and a second semiconductor layer, a first main face and a second main face, situated opposite the first main face, wherein the first main face is formed by a surface of the first semiconductor layer and the second main face is formed by a surface of the second semiconductor layer. The semiconductor body may further include at least one side face connecting the first main face to the second main face. The electrically conductive carrier layer may regionally cover the second main face the carrier layer is structured in such a way that it has at least one contact-free depression. Furthermore, a method for producing such a semiconductor component is disclosed.
    Type: Application
    Filed: May 17, 2018
    Publication date: May 14, 2020
    Inventors: Isabel Otto, Dominik Scholz, Christian Leirer
  • Publication number: 20200136348
    Abstract: A semiconductor laser includes a contact carrier having electrical contact surfaces to electrically contact a semiconductor layer sequence, an electrical connecting line from a main side of the semiconductor layer sequence facing away from the contact carrier and a plurality of capacitors, wherein the connecting line is located on or in the semiconductor layer sequence, at least two of the capacitors are present, the capacitances of which differ by at least a factor of 50, the capacitor having a smaller capacitance is configured to supply the active zone with current immediately after a switch-on operation, and the capacitor having the larger capacitance is configured to a subsequent current supply, the capacitor having the smaller capacitance directly electrically connects to the active zone, and a resistor is arranged between the capacitor having the larger capacitance and the active zone, the resistor having a resistance of at least 100 ?.
    Type: Application
    Filed: April 13, 2018
    Publication date: April 30, 2020
    Applicant: OSRAM Opto Semiconductors GmbH
    Inventors: Roland Heinrich ENZMANN, Andreas WOJCIK, Hubert HALBRITTER, Martin Rudolf BEHRINGER, Josip MARIC, Mariel Grace JAMA, Berthold HAHN, Christian MÜLLER, Isabel OTTO
  • Patent number: 10622508
    Abstract: A method for manufacturing an optoelectronic component includes providing a growth substrate; applying a succession of semiconductor layers; structuring the succession of semiconductor layers; applying a sacrificial layer; depositing a metal layer; optionally planarizing using a dielectric material; forming a second terminal contact through the active region; applying a permanent support; and detaching the growth substrate and exposing the metal layer.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: April 14, 2020
    Assignee: OSRAM OLED GmbH
    Inventors: Dominik Scholz, Alexander F. Pfeuffer, Isabel Otto
  • Publication number: 20200013926
    Abstract: A method for manufacturing a radiation-emitting semiconductor device and radiation-emitting semiconductor device are disclosed. In an embodiment a method includes providing a radiation-emitting semiconductor chip having a first main surface including a radiation exit surface of the semiconductor chip, applying a metallic seed layer to a second main surface of the semiconductor chip opposite to the first main surface, galvanically depositing a first metallic layer on the seed layer for forming a first electrical contact point and a second electrical contact point, galvanically depositing a second metallic layer on the first metallic layer for forming the first electrical contact point and the second electrical contact point, wherein a material of the first metallic layer and a material of the second metallic layer are different, and applying a casting compound between the contact points.
    Type: Application
    Filed: May 3, 2018
    Publication date: January 9, 2020
    Inventors: Christian Leirer, Isabel Otto
  • Patent number: 10516079
    Abstract: A method is specified for producing an optoelectronic semiconductor component, comprising the following steps: A) providing a structured semiconductor layer sequence (21, 22, 23) having a first semiconductor layer (21) with a base region (21c), at least one well (211), and a first cover region (21a) in the region of the well (211) facing away from the base surface (21c), an active layer (23), and a second semiconductor layer (22) on a side of the active layer (23) facing away from the first semiconductor layer (21), wherein the active layer (23) and the second semiconductor layer (22) are structured jointly in a plurality of regions (221, 231) and each region (221, 231) forms, together with the first semiconductor layer (21), an emission region (3), B) simultaneous application of a first contact layer (41) on the first cover surface (21a) and a second contact layer (42) on a second cover surface (3a) of the emission regions (3) facing away from the first semiconductor layer (21) in such a way that the firs
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: December 24, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Isabel Otto, Alexander F. Pfeuffer, Dominik Scholz
  • Patent number: 10453989
    Abstract: Disclosed is a method for producing a plurality of semiconductor chips (10). A composite (1), which comprises a carrier (4) and a semiconductor layer sequence (2, 3), is provided. Separating trenches (17) are formed in the semiconductor layer sequence (2, 3) along an isolation pattern (16). A filling layer (11) limiting the semiconductor layer sequence (2, 3) toward the separating trenches (17) is applied to a side of the semiconductor layer sequence (2, 3) facing away from the carrier (4). Furthermore, a metal layer (10) adjacent to the filling layer (11) is applied in the separating trenches (17). The semiconductor chips (20) are isolated by removing the metal layer (10) adjacent to the filling layer (11) in the separating trenches (17). Each isolated semiconductor chip (20) has one part of the semiconductor layer sequence (2, 3), and of the filling layer (11). Also disclosed is a semiconductor chip (10).
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: October 22, 2019
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Lutz Hoeppel, Alexander F. Pfeuffer, Dominik Scholz, Isabel Otto, Norwin Von Malm, Stefan Illek
  • Publication number: 20190312184
    Abstract: A method of producing optoelectronic semiconductor components including providing a primary light source having a carrier and a semiconductor layer sequence mounted thereon that generates primary light (B), wherein the semiconductor layer sequence is structured into a plurality of pixels that can be driven electrically independently of each other, and the carrier includes a plurality of control units that drive the pixels, providing at least one conversion unit adapted to convert the primary light (B) into at least one secondary light (G, R), wherein the conversion unit is grown continuously from at least one semiconductor material, structuring the conversion unit, wherein portions of the semiconductor material are removed in accordance with the pixels, and applying the conversion unit to the semiconductor layer sequence so that the remaining semiconductor material is uniquely assigned to a portion of the pixels.
    Type: Application
    Filed: October 25, 2017
    Publication date: October 10, 2019
    Inventors: Isabel Otto, Alexander F. Pfeuffer, Britta Göötz, Norwin von Malm
  • Publication number: 20190181296
    Abstract: A component includes a carrier; and a semiconductor body arranged on the carrier, wherein the semiconductor body includes a semiconductor layer facing away from the carrier, a further semiconductor layer facing the carrier and an optically active layer located therebetween, the carrier has a metallic carrier layer that is contiguous and mechanically stabilizes the component, the carrier includes a mirror layer disposed between the semiconductor body and the carrier layer, and the carrier has a compensating layer directly adjacent to the carrier layer and configured to compensate for internal mechanical strains in the component.
    Type: Application
    Filed: July 21, 2017
    Publication date: June 13, 2019
    Inventors: Isabel Otto, Korbinian Perzlmaier
  • Publication number: 20190013434
    Abstract: A method for manufacturing an optoelectronic component includes providing a growth substrate; applying a succession of semiconductor layers; structuring the succession of semiconductor layers; applying a sacrificial layer; depositing a metal layer; optionally planarizing using a dielectric material; forming a second terminal contact through the active region; applying a permanent support; and detaching the growth substrate and exposing the metal layer.
    Type: Application
    Filed: February 24, 2017
    Publication date: January 10, 2019
    Inventors: Dominik Scholz, Alexander F. Pfeuffer, Isabel Otto
  • Publication number: 20180294378
    Abstract: A method is specified for producing an optoelectronic semiconductor component, comprising the following steps: A) providing a structured semiconductor layer sequence (21, 22, 23) having—a first semiconductor layer (21) with a base region (21c), at least one well (211), and a first cover region (21a) in the region of the well (211) facing away from the base surface (21c),—an active layer (23), and—a second semiconductor layer (22) on a side of the active layer (23) facing away from the first semiconductor layer (21), wherein—the active layer (23) and the second semiconductor layer (22) are structured jointly in a plurality of regions (221, 231) and each region (221, 231) forms, together with the first semiconductor layer (21), an emission region (3), B) simultaneous application of a first contact layer (41) on the first cover surface (21a) and a second contact layer (42) on a second cover surface (3a) of the emission regions (3) facing away from the first semiconductor layer (21) in such a way that—the first c
    Type: Application
    Filed: June 12, 2018
    Publication date: October 11, 2018
    Inventors: Isabel OTTO, Alexander F. PFEUFFER, Dominik SCHOLZ
  • Patent number: 10026868
    Abstract: A method is specified for producing an optoelectronic semiconductor component, comprising the following steps: A) providing a structured semiconductor layer sequence (21, 22, 23) having —a first semiconductor layer (21) with a base region (21c), at least one well (211), and a first cover region (21a) in the region of the well (211) facing away from the base surface (21c), —an active layer (23), and —a second semiconductor layer (22) on a side of the active layer (23) facing away from the first semiconductor layer (21), wherein —the active layer (23) and the second semiconductor layer (22) are structured jointly in a plurality of regions (221, 231) and each region (221, 231) forms, together with the first semiconductor layer (21), an emission region (3), B) simultaneous application of a first contact layer (41) on the first cover surface (21a) and a second contact layer (42) on a second cover surface (3a) of the emission regions (3) facing away from the first semiconductor layer (21) in such a way that —the fi
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: July 17, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Isabel Otto, Alexander F. Pfeuffer, Dominik Scholz
  • Patent number: 10008487
    Abstract: An optoelectronic semiconductor chip includes a semiconductor layer sequence with an upper face and a lower face opposite the upper face, wherein the semiconductor layer sequence has an active layer that generates electromagnetic radiation, and a plurality of contact elements that electrically contact the semiconductor layer sequence arranged on the upper face, wherein the semiconductor chip is a thin-film semiconductor chip, the lower face is a radiation decoupling surface through which the radiation generated in the semiconductor layer sequence is decoupled, the contact elements can be electrically actuated individually and independently from one another, and the semiconductor layer sequence has a thickness of at most 3 ?m.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: June 26, 2018
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Isabel Otto, Alexander F. Pfeuffer
  • Publication number: 20180069147
    Abstract: Disclosed is a method for producing a plurality of semiconductor chips (10). A composite (1), which comprises a carrier (4) and a semiconductor layer sequence (2, 3), is provided. Separating trenches (17) are formed in the semiconductor layer sequence (2, 3) along an isolation pattern (16). A filling layer (11) limiting the semiconductor layer sequence (2, 3) toward the separating trenches (17) is applied to a side of the semiconductor layer sequence (2, 3) facing away from the carrier (4). Furthermore, a metal layer (10) adjacent to the filling layer (11) is applied in the separating trenches (17). The semiconductor chips (20) are isolated by removing the metal layer (10) adjacent to the filling layer (11) in the separating trenches (17). Each isolated semiconductor chip (20) has one part of the semiconductor layer sequence (2, 3), and of the filling layer (11). Also disclosed is a semiconductor chip (10).
    Type: Application
    Filed: February 15, 2016
    Publication date: March 8, 2018
    Inventors: Lutz HOEPPEL, Alexander F. PFEUFFER, Dominik SCHOLZ, Isabel OTTO, Norwin VON MALM, Stefan ILLEK
  • Patent number: 9825208
    Abstract: A method of producing an optoelectronic semiconductor component includes providing a semiconductor body; applying a photoconductive layer on a radiation exit surface of the semiconductor body, wherein the semiconductor body emits electromagnetic radiation during operation; exposing at least one sub-region of the photoconductive layer with electromagnetic radiation generated by the semiconductor body; and depositing a conversion layer on the sub-region of the photoconductive layer by an electrophoresis process.
    Type: Grant
    Filed: August 27, 2015
    Date of Patent: November 21, 2017
    Assignee: OSRAM Opto Semiconductors GmbH
    Inventors: Isabel Otto, Ion Stoll