Patents by Inventor Isabelle Besnard

Isabelle Besnard has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8030100
    Abstract: The application relates to a chemical sensor device comprising a substrate (1), a sensor medium (3) formed on the substrate, the sensor medium comprising one-dimensional nanoparticles, wherein the one-dimensional nanoparticles essentially consist of a semiconducting AxBy compound, e.g. V2O5 and detection means (2) for detecting a change of a physical property of the sensor medium e.g. conductivity. The porosity of the sensor medium supports a fast access of the analyte to the sensing material and therefore a fast response of the sensor. The selectivity and sensitivity of the sensor can be tailored by doping the one-dimensional nanoscale material with different dopants or by varying the dopant concentration. Sensitivity of the sensor device to an analyte, preferably an amine, can be increased by increasing relative humidity of the sample to at least 5%.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: October 4, 2011
    Assignee: Sony Deutschland GmbH
    Inventors: Isabelle Besnard, Tobias Vossmeyer, Akio Yasuda, Marko Burghard, Ulrich Schlecht
  • Publication number: 20090227059
    Abstract: The application relates to a chemical sensor device comprising a substrate (1), a sensor medium (3) formed on the substrate, the sensor medium comprising one-dimensional nanoparticles, wherein the one-dimensional nanoparticles essentially consist of a semiconducting AxBy compound, e.g. V2O5 and detection means (2) for detecting a change of a physical property of the sensor medium e.g. conductivity. The porosity of the sensor medium supports a fast access of the analyte to the sensing material and therefore a fast response of the sensor. The selectivity and sensitivity of the sensor can be tailored by doping the one-dimensional nanoscale material with different dopants or by varying the dopant concentration. Sensitivity of the sensor device to an analyte, preferably an amine, can be increased by increasing relative humidity of the sample to at least 5%.
    Type: Application
    Filed: March 26, 2009
    Publication date: September 10, 2009
    Applicants: MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG..., Sony Deutschland GmbH
    Inventors: Isabelle BESNARD, Tobias VOSSMEYER, Akio YASUDA, Marko BURGHARD, Ulrich SCHLECHT
  • Patent number: 7531136
    Abstract: The application relates to a chemical sensor device comprising a substrate (1), a sensor medium (3) formed on the substrate, the sensor medium comprising one-dimensional nanoparticles, wherein the one-dimensional nanoparticles essentially consist of a semiconducting AxBy compound, e.g. V2O5 and detection means (2) for detecting a change of a physical property of the sensor medium e.g. conductivity. The porosity of the sensor medium supports a fast access of the analyte to the sensing material and therefore a fast response of the sensor. The selectivity and sensitivity of the sensor can be tailored by doping the one-dimensional nanoscale material with different dopants or by varying the dopant concentration. Sensitivity of the sensor device to an analyte, preferably an amine, can be increased by increasing relative humidity of the sample to at least 5%.
    Type: Grant
    Filed: February 14, 2006
    Date of Patent: May 12, 2009
    Assignees: Sony Deutschland GmbH, Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Isabelle Besnard, Tobias Vossmeyer, Akio Yasuda, Marko Burghard, Ulrich Schlecht
  • Publication number: 20090084162
    Abstract: The application relates to a chemical sensor device comprising a substrate (1), a sensor medium (3) formed on the substrate, the sensor medium comprising one-dimensional nanoparticles, wherein the one-dimensional nanoparticles essentially consist of a semiconducting AxBy compound, e.g. V2O5 and detection means (2) for detecting a change of a physical property of the sensor medium e.g. conductivity. The porosity of the sensor medium supports a fast access of the analyte to the sensing material and therefore a fast response of the sensor. The selectivity and sensitivity of the sensor can be tailored by doping the one-dimensional nanoscale material with different dopants or by varying the dopant concentration. Sensitivity of the sensor device to an analyte, preferably an amine, can be increased by increasing relative humidity of the sample to at least 5%.
    Type: Application
    Filed: February 14, 2006
    Publication date: April 2, 2009
    Applicants: SONY INTERNATIONAL (EUROPE) GMBH, MAX-PLANCK-GESELLSCHAFT ZUR FOERDERUNG DER WISSENSCHAFTEN E. V.
    Inventors: Isabelle Besnard, Tobias Vossmeyer, Akio Yasuda, Marko Burghard, Ulrich Schlecht
  • Patent number: 7211439
    Abstract: The invention relates to a nanoparticle film comprising a nanoparticle network formed of nanoparticles interlinked by linker molecules. The linker molecules have at least two linker units that can bind to the surface of the nanoparticles. By introducing selectivity-enhancing units in the linker molecule, the selectivity of the nanoparticle film towards target analytes can be enhanced. A fine-tuning of the selectivity can be achieved by including a fine-tuning unit in the vicinity of the selectivity-enhancing unit. The nanoparticle film can be used to produce chemical sensors which are selective and stable in their performance.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: May 1, 2007
    Assignee: Sony Deutschland GmbH
    Inventors: Tobias Vossmeyer, Isabelle Besnard, Jurina Wessels, William E. Ford, Akio Yasuda
  • Publication number: 20050072213
    Abstract: The application relates to a chemical sensor device comprising a substrate (1), a sensor medium (3) formed on the substrate, the sensor medium comprising one-dimensional nanoparticles, wherein the one-dimensional nanoparticles essentially consist of a semiconducting AxBy compound, e.g. V2O5 and detection means (2) for detecting a change of a physical property of the sensor medium e.g. conductivity. The porosity of the sensor medium supports a fast access of the analyte to the sensing material and therefore a fast response of the sensor. The selectivity and sensitivity of the sensor can be tailored by doping the one-dimensional nanoscale material with different dopants or by varying the dopant concentration. Sensitivity of the sensor device to an analyte, preferably an amine, can be increased by increasing relative humidity of the sample to at least 5%.
    Type: Application
    Filed: November 26, 2002
    Publication date: April 7, 2005
    Inventors: Isabelle Besnard, Tobias Vossmeyer, Akio Yasuda, Marko Burghard, Ulrich Schlecht
  • Publication number: 20020132361
    Abstract: The invention relates to a nanoparticle film comprising a nanoparticle network formed of nanoparticles interlinked by linker molecules. The linker molecules have at least two linker units that can bind to the surface of the nanoparticles. By introducing selectivity-enhancing units in the linker molecule, the selectivity of the nanoparticle film towards target analytes can be enhanced. A fine-tuning of the selectivity can be achieved by including a fine-tuning unit in the vicinity of the selectivity-enhancing unit. The nanoparticle film can be used to produce chemical sensors which are selective and stable in their performance.
    Type: Application
    Filed: December 11, 2001
    Publication date: September 19, 2002
    Inventors: Tobias Vossmeyer, Isabelle Besnard, Jurina Wessels, William E. Ford, Akio Yasuda