Patents by Inventor Isabelle M. DAROLLES

Isabelle M. DAROLLES has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11881581
    Abstract: The present disclosure relates to a method of making core-shell and yolk-shell nanoparticles, and to electrodes comprising the same. The core-shell and yolk-shell nanoparticles and electrodes comprising them are suitable for use in electrochemical cells, such as fluoride shuttle batteries. The shell may protect the metal core from oxidation, including in an electrochemical cell. In some embodiments, an electrochemically active structure includes a dimensionally changeable active material forming a particle that expands or contracts upon reaction with or release of fluoride ions. One or more particles are at least partially surrounded with a fluoride-conducting encapsulant and optionally one or more voids are formed between the active material and the encapsulant using sacrificial layers or selective etching. When the electrochemically active structures are used in secondary batteries, the presence of voids can accommodate dimensional changes of the active material.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: January 23, 2024
    Assignees: HONDA MOTOR CO., LTD., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Nam Hawn Chou, Kaoru Omichi, Ryan McKenney, Qingmin Xu, Christopher Brooks, Simon C. Jones, Isabelle M. Darolles, Hongjin Tan
  • Publication number: 20220140307
    Abstract: Battery electrodes using VACNT forests to create 3D electrode nanostructures, and methods of making, are described. The VACNTs are electrically and mechanically attached to the anode or cathode substrates, providing a large area of 3D surfaces for coating with active materials and high-conductivity electron pathways to the cell current collectors. A number of different active materials suitable for anodes and cathodes in lithium-ion batteries may be used to coat the individual carbon nanotubes. The high surface area provided by the VACNT forest and the nano-dimensions of the coated active materials enable both high energy-density and high power-density to be achieved with the same battery. Complete conformal coating of the individual CNTs may be achieved by a number of different methods, and coating with multiple active materials may be used to create nanolaminate coatings having improved electrochemical characteristics over single materials.
    Type: Application
    Filed: October 12, 2021
    Publication date: May 5, 2022
    Inventors: Isabelle M. Darolles, Azin Fahimi, Sean A. Mendoza, Shannon C. Santana, Zarui S. Chikneyan, Jeffrey L. Arias
  • Publication number: 20220123356
    Abstract: Features for rechargeable lithium ion batteries, the batteries optionally employing vertically aligned carbon nanotube scaffolding, are described. Methods of manufacture and a solid polymer electrolyte are described for 3-dimensional battery architectures using the vertically aligned carbon nanotubes. Poly(ethylene)oxide bis(azide) and graphene poly(lactic acid) composite coatings are also described for use in such batteries or others.
    Type: Application
    Filed: June 29, 2021
    Publication date: April 21, 2022
    Inventors: Isabelle M. Darolles, Azin Fahimi, Cong Wang, Adrianus I. Aria, Luciana Cendon, Morteza Gharib
  • Publication number: 20220093918
    Abstract: The present disclosure relates to a method of making core-shell and yolk-shell nanoparticles, and to electrodes comprising the same. The core-shell and yolk-shell nanoparticles and electrodes comprising them are suitable for use in electrochemical cells, such as fluoride shuttle batteries. The shell may protect the metal core from oxidation, including in an electrochemical cell. In some embodiments, an electrochemically active structure includes a dimensionally changeable active material forming a particle that expands or contracts upon reaction with or release of fluoride ions. One or more particles are at least partially surrounded with a fluoride-conducting encapsulant and optionally one or more voids are formed between the active material and the encapsulant using sacrificial layers or selective etching. When the electrochemically active structures are used in secondary batteries, the presence of voids can accommodate dimensional changes of the active material.
    Type: Application
    Filed: December 3, 2021
    Publication date: March 24, 2022
    Inventors: Nam Hawn CHOU, Kaoru OMICHI, Ryan MCKENNEY, Qingmin XU, Christopher BROOKS, Simon C. JONES, Isabelle M. DAROLLES, Hongjin TAN
  • Patent number: 11251420
    Abstract: The present disclosure relates to a method of making core-shell and yolk-shell nanoparticles, and to electrodes comprising the same. The core-shell and yolk-shell nanoparticles and electrodes comprising them are suitable for use in electrochemical cells, such as fluoride shuttle batteries. The shell may protect the metal core from oxidation, including in an electrochemical cell. In some embodiments, an electrochemically active structure includes a dimensionally changeable active material forming a particle that expands or contracts upon reaction with or release of fluoride ions. One or more particles are at least partially surrounded with a fluoride-conducting encapsulant and optionally one or more voids are formed between the active material and the encapsulant using sacrificial layers or selective etching. When the electrochemically active structures are used in secondary batteries, the presence of voids can accommodate dimensional changes of the active material.
    Type: Grant
    Filed: December 15, 2017
    Date of Patent: February 15, 2022
    Assignees: HONDA MOTOR CO., LTD., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Nam Hawn Chou, Kaoru Omichi, Ryan McKenney, Qingmin Xu, Christopher Brooks, Simon C. Jones, Isabelle M. Darolles, Hongjin Tan
  • Publication number: 20220037652
    Abstract: The present disclosure relates to a method of making core-shell and yolk-shell nanoparticles, and to electrodes comprising the same. The core-shell and yolk-shell nanoparticles and electrodes comprising them are suitable for use in electrochemical cells, such as fluoride shuttle batteries. The shell may protect the metal core from oxidation, including in an electrochemical cell. In some embodiments, an electrochemically active structure includes a dimensionally changeable active material forming a particle that expands or contracts upon reaction with or release of fluoride ions. One or more particles are at least partially surrounded with a fluoride-conducting encapsulant and optionally one or more voids are formed between the active material and the encapsulant using sacrificial layers or selective etching. When the electrochemically active structures are used in secondary batteries, the presence of voids can accommodate dimensional changes of the active material.
    Type: Application
    Filed: October 15, 2021
    Publication date: February 3, 2022
    Inventors: Nam Hawn CHOU, Kaoru OMICHI, Ryan MCKENNEY, Qingmin XU, Christopher BROOKS, Simon C. JONES, Isabelle M. DAROLLES, Hongjin TAN
  • Publication number: 20210367274
    Abstract: The present disclosure relates to a method of making core-shell and yolk-shell nanoparticles, and to electrodes comprising the same. The core-shell and yolk-shell nanoparticles and electrodes comprising them are suitable for use in electrochemical cells, such as fluoride shuttle batteries. The shell may protect the metal core from oxidation, including in an electrochemical cell. In some embodiments, an electrochemically active structure includes a dimensionally changeable active material forming a particle that expands or contracts upon reaction with or release of fluoride ions. One or more particles are at least partially surrounded with a fluoride-conducting encapsulant and optionally one or more voids are formed between the active material and the encapsulant using sacrificial layers or selective etching. The fluoride-conducting encapsulant may comprise one or more metals.
    Type: Application
    Filed: August 5, 2021
    Publication date: November 25, 2021
    Inventors: Nam Hawn Chou, Kaoru Omichi, Ryan McKenney, Qingmin Xu, Christopher Brooks, Simon C. Jones, Isabelle M. Darolles, Hongjin Tan
  • Patent number: 11177512
    Abstract: The present disclosure relates to a method of making core-shell and yolk-shell nanoparticles, and to electrodes comprising the same. The core-shell and yolk-shell nanoparticles and electrodes comprising them are suitable for use in electrochemical cells, such as fluoride shuttle batteries. The shell may protect the metal core from oxidation, including in an electrochemical cell. In some embodiments, an electrochemically active structure includes a dimensionally changeable active material forming a particle that expands or contracts upon reaction with or release of fluoride ions. One or more particles are at least partially surrounded with a fluoride-conducting encapsulant and optionally one or more voids are formed between the active material and the encapsulant using sacrificial layers or selective etching. The fluoride-conducting encapsulant may comprise one or more metals.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: November 16, 2021
    Assignees: HONDA MOTOR CO., LTD., CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Nam Hawn Chou, Kaoru Omichi, Ryan McKenney, Qingmin Xu, Christopher Brooks, Simon C. Jones, Isabelle M. Darolles, Hongjin Tan
  • Patent number: 11056712
    Abstract: Features for rechargeable lithium ion batteries, the batteries optionally employing vertically aligned carbon nanotube scaffolding, are described. Methods of manufacture and a solid polymer electrolyte are described for 3-dimensional battery architectures using the vertically aligned carbon nanotubes. Poly(ethylene)oxide bis(azide) and graphene poly(lactic acid) composite coatings are also described for use in such batteries or others.
    Type: Grant
    Filed: January 20, 2017
    Date of Patent: July 6, 2021
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Isabelle M. Darolles, Azin Fahimi, Cong Wang, Adrianus I. Aria, Luciana Cendon, Morteza Gharib
  • Publication number: 20180301764
    Abstract: The present disclosure relates to a method of making core-shell and yolk-shell nanoparticles, and to electrodes comprising the same. The core-shell and yolk-shell nanoparticles and electrodes comprising them are suitable for use in electrochemical cells, such as fluoride shuttle batteries. The shell may protect the metal core from oxidation, including in an electrochemical cell. In some embodiments, an electrochemically active structure includes a dimensionally changeable active material forming a particle that expands or contracts upon reaction with or release of fluoride ions. One or more particles are at least partially surrounded with a fluoride-conducting encapsulant and optionally one or more voids are formed between the active material and the encapsulant using sacrificial layers or selective etching. The fluoride-conducting encapsulant may comprise one or more metals.
    Type: Application
    Filed: June 20, 2018
    Publication date: October 18, 2018
    Inventors: Nam Hawn CHOU, Kaoru OMICHI, Ryan MCKENNEY, Qingmin XU, Christopher BROOKS, Simon C. JONES, Isabelle M. DAROLLES, Hongjin TAN
  • Publication number: 20180175382
    Abstract: The present disclosure relates to a method of making core-shell and yolk-shell nanoparticles, and to electrodes comprising the same. The core-shell and yolk-shell nanoparticles and electrodes comprising them are suitable for use in electrochemical cells, such as fluoride shuttle batteries. The shell may protect the metal core from oxidation, including in an electrochemical cell. In some embodiments, an electrochemically active structure includes a dimensionally changeable active material forming a particle that expands or contracts upon reaction with or release of fluoride ions. One or more particles are at least partially surrounded with a fluoride-conducting encapsulant and optionally one or more voids are formed between the active material and the encapsulant using sacrificial layers or selective etching. When the electrochemically active structures are used in secondary batteries, the presence of voids can accommodate dimensional changes of the active material.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Inventors: Nam Hawn CHOU, Kaoru Omichi, Ryan McKenney, Qingmin Xu, Christopher Brooks, Simon C. Jones, Isabelle M. Darolles, Hongjin Tan
  • Publication number: 20170214083
    Abstract: Features for rechargeable lithium ion batteries, the batteries optionally employing vertically aligned carbon nanotube scaffolding, are described. Methods of manufacture and a solid polymer electrolyte are described for 3-dimensional battery architectures using the vertically aligned carbon nanotubes. Poly(ethylene)oxide bis(azide) and graphene poly(lactic acid) composite coatings are also described for use in such batteries or others.
    Type: Application
    Filed: January 20, 2017
    Publication date: July 27, 2017
    Inventors: Isabelle M. Darolles, Azin Fahimi, Cong Wang, Adrianus I. Aria, Luciana Cendon, Morteza Gharib
  • Publication number: 20140030559
    Abstract: Electrochemical cells of the present invention are versatile and include primary and secondary cells useful for a range of important applications including use in portable electronic devices. Electrochemical cells of the present invention also exhibit enhanced safety and stability relative to conventional state of the art primary lithium batteries and lithium ion secondary batteries. For example, electrochemical cells of the present invention include secondary electrochemical cells using a combination of anion and cation charge carriers capable of accommodation by positive and negative electrodes independently comprising host materials.
    Type: Application
    Filed: June 19, 2013
    Publication date: January 30, 2014
    Inventors: Rachid YAZAMI, Isabelle M. DAROLLES, Cedric M. WEISS
  • Publication number: 20100221603
    Abstract: The present invention provides electrochemical cells capable of good electronic performance, particularly high specific energies, useful discharge rate capabilities and good cycle life. The invention includes primary and secondary batteries having positive and negative electrodes that exchange fluoride ions with an electrolyte comprising a fluoride salt and solvent.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 2, 2010
    Inventors: Rachid YAZAMI, Isabelle M. DAROLLES, Cedric M. WEISS