Patents by Inventor Isadora Nun
Isadora Nun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12205682Abstract: Techniques to suggest chemical compounds with a desired flavor profile or that can be used to recreate functional properties of a target chemical compound, using artificial intelligence, are disclosed. An artificial intelligence model is trained on source chemical compounds with known flavors. The artificial intelligence model learns relationships between the source chemical compounds and their known flavors and generates source chemical compound projected embeddings and true flavor projected embeddings. From either the source chemical compound projected embeddings or the true flavor projected embeddings, one or more chemical compounds for the identified target chemical compound or the identified desired flavor profile may be determined based on a similarity search.Type: GrantFiled: June 8, 2022Date of Patent: January 21, 2025Assignee: Notco Delaware, LLCInventors: Hojin Kang, Kyohei Kaneko, Francisco Clavero, Aadit Patel, Isadora Nun, Karim Pichara
-
Patent number: 11644416Abstract: An artificial intelligence model receives a FTIR spectrum of a given ingredient to predict its protein secondary structure. The model includes three artificial modules, which generate three predicted values corresponding to structural categories (e.g., ?-helix, ?-sheet, and other) of the predicted secondary structure. Proteins may be compared for similarity based on predicted values corresponding to the structural categories of the predicted secondary structure.Type: GrantFiled: February 19, 2021Date of Patent: May 9, 2023Assignee: NotCo Delaware, LLCInventors: Nathan O'Hara, Adil Yusuf, Julia Christin Berning, Francisca Villanueva, Rodrigo Contreras, Isadora Nun, Aadit Patel, Karim Pichara
-
Publication number: 20230139766Abstract: Techniques to suggest chemical compounds with a desired flavor profile or that can be used to recreate functional properties of a target chemical compound, using artificial intelligence, are disclosed. An artificial intelligence model is trained on source chemical compounds with known flavors. The artificial intelligence model learns relationships between the source chemical compounds and their known flavors and generates source chemical compound projected embeddings and true flavor projected embeddings. From either the source chemical compound projected embeddings or the true flavor projected embeddings, one or more chemical compounds for the identified target chemical compound or the identified desired flavor profile may be determined based on a similarity search.Type: ApplicationFiled: June 8, 2022Publication date: May 4, 2023Inventors: Hojin Kang, Kyohei Kaneko, Francisco Clavero, Aadit Patel, Isadora Nun, Karim Pichara
-
Publication number: 20230099733Abstract: An artificial intelligence model receives a FTIR spectrum of a given ingredient to predict its protein secondary structure. The model includes three artificial modules, which generate three predicted values corresponding to structural categories (e.g., ?-helix, ?-sheet, and other) of the predicted secondary structure. Proteins may be compared for similarity based on predicted values corresponding to the structural categories of the predicted secondary structure.Type: ApplicationFiled: November 28, 2022Publication date: March 30, 2023Inventors: Nathan O'Hara, Adil Yusuf, Julia Christin Berning, Francisca Villanueva, Rodrigo Contreras, Isadora Nun, Aadit Patel, Karim Pichara
-
Publication number: 20230021736Abstract: Techniques to generate experiment trials using artificial intelligence are disclosed. A training set for an experiment generator is continuously built up by using assessed experiment trials. The experiment generator is optimized using one of a plurality of optimization algorithms, depending on which mode experiment generator is to run in for an experiment. The mode is dependent on the experiment mode of the experiment. The experiment generator generates a batch of one or more experiment trials for the experiment. Any of the generated experiment trials may be tried or experimented by a user and may be updated with assessment data as an assessed experiment trial.Type: ApplicationFiled: September 29, 2022Publication date: January 26, 2023Inventors: Kyohei Kaneko, Yoav Navon, Isadora Nun, Aadit Patel, Nathan O'Hara, Eugenio Herrera, Ofer Philip Korsunsky, Karim Pichara
-
Publication number: 20220406417Abstract: Techniques to suggest alternative chemical compounds that can be used to recreate or mimic a target flavor using artificial intelligence are disclosed. A neural network based model is trained on source chemical compounds and their corresponding flavors and odors. The neural network-based model learns compound embeddings of the source chemical compounds and a target chemical compound of a food item. From the compound embeddings, one or more chemical compounds that are closest to the target chemical compound may be determined by a distance metric. Each suggested chemical compound is an alternative that can be used to recreate functional features of the target chemical compound.Type: ApplicationFiled: April 5, 2022Publication date: December 22, 2022Inventors: Kyohei Kaneko, Nathan O'Hara, Isadora Nun, Aadit Patel, Kavitakumari Solanki, Karim Pichara
-
Patent number: 11514350Abstract: Techniques to generate experiment trials using artificial intelligence are disclosed. A training set for an experiment generator is continuously built up by using assessed experiment trials. The experiment generator is optimized using one of a plurality of optimization algorithms, depending on which mode experiment generator is to run in for an experiment. The mode is dependent on the experiment mode of the experiment. The experiment generator generates a batch of one or more experiment trials for the experiment. Any of the generated experiment trials may be tried or experimented by a user and may be updated with assessment data as an assessed experiment trial.Type: GrantFiled: May 4, 2021Date of Patent: November 29, 2022Assignee: NotCo Delaware, LLCInventors: Kyohei Kaneko, Yoav Navon, Isadora Nun, Aadit Patel, Nathan O'Hara, Eugenio Herrera, Ofer Philip Korsunsky, Karim Pichara
-
Publication number: 20220358387Abstract: Techniques to generate experiment trials using artificial intelligence are disclosed. A training set for an experiment generator is continuously built up by using assessed experiment trials. The experiment generator is optimized using one of a plurality of optimization algorithms, depending on which mode experiment generator is to run in for an experiment. The mode is dependent on the experiment mode of the experiment. The experiment generator generates a batch of one or more experiment trials for the experiment. Any of the generated experiment trials may be tried or experimented by a user and may be updated with assessment data as an assessed experiment trial.Type: ApplicationFiled: May 4, 2021Publication date: November 10, 2022Inventors: Kyohei Kaneko, Yoav Navon, Isadora Nun, Aadit Patel, Nathan O'Hara, Eugenio Herrera, Ofer Philip Korsunsky, Karim Pichara
-
Patent number: 11404144Abstract: Techniques to suggest chemical compounds with a desired flavor profile or that can be used to recreate functional properties of a target chemical compound, using artificial intelligence, are disclosed. An artificial intelligence model is trained on source chemical compounds with known flavors. The artificial intelligence model learns relationships between the source chemical compounds and their known flavors and generates source chemical compound projected embeddings and true flavor projected embeddings. From either the source chemical compound projected embeddings or the true flavor projected embeddings, one or more chemical compounds for the identified target chemical compound or the identified desired flavor profile may be determined based on a similarity search.Type: GrantFiled: November 4, 2021Date of Patent: August 2, 2022Assignee: NotCo Delaware, LLCInventors: Hojin Kang, Kyohei Kaneko, Francisco Clavero, Aadit Patel, Isadora Nun, Karim Pichara
-
Patent number: 11348664Abstract: Techniques to suggest alternative chemical compounds that can be used to recreate or mimic a target flavor using artificial intelligence are disclosed. A neural network based model is trained on source chemical compounds and their corresponding flavors and odors. The neural network-based model learns compound embeddings of the source chemical compounds and a target chemical compound of a food item. From the compound embeddings, one or more chemical compounds that are closest to the target chemical compound may be determined by a distance metric. Each suggested chemical compound is an alternative that can be used to recreate functional features of the target chemical compound.Type: GrantFiled: June 17, 2021Date of Patent: May 31, 2022Assignee: NotCo Delaware, LLCInventors: Kyohei Kaneko, Nathan O'Hara, Isadora Nun, Aadit Patel, Kavitakumari Solanki, Karim Pichara
-
Publication number: 20220136966Abstract: An artificial intelligence model receives a FTIR spectrum of a given ingredient to predict its protein secondary structure. The model includes three artificial modules, which generate three predicted values corresponding to structural categories (e.g., ?-helix, ?-sheet, and other) of the predicted secondary structure. Proteins may be compared for similarity based on predicted values corresponding to the structural categories of the predicted secondary structure.Type: ApplicationFiled: February 19, 2021Publication date: May 5, 2022Inventors: Nathan O'Hara, Adil Yusuf, Julia Christin Berning, Francisca Villanueva, Rodrigo Contreras, Isadora Nun, Aadit Patel, Karim Pichara
-
Patent number: 10962473Abstract: An artificial intelligence model receives a FTIR spectrum of a given ingredient to predict its protein secondary structure. The model includes three artificial modules, which generate three predicted values corresponding to structural categories (e.g., ?-helix, ?-sheet, and other) of the predicted secondary structure. Proteins may be compared for similarity based on predicted values corresponding to the structural categories of the predicted secondary structure.Type: GrantFiled: November 5, 2020Date of Patent: March 30, 2021Assignee: NOTCO DELAWARE, LLCInventors: Nathan O'Hara, Adil Yusuf, Julia Christin Berning, Francisca Villanueva, Rodrigo Contreras, Isadora Nun, Aadit Patel, Karim Pichara