Patents by Inventor Isadora Nun

Isadora Nun has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12205682
    Abstract: Techniques to suggest chemical compounds with a desired flavor profile or that can be used to recreate functional properties of a target chemical compound, using artificial intelligence, are disclosed. An artificial intelligence model is trained on source chemical compounds with known flavors. The artificial intelligence model learns relationships between the source chemical compounds and their known flavors and generates source chemical compound projected embeddings and true flavor projected embeddings. From either the source chemical compound projected embeddings or the true flavor projected embeddings, one or more chemical compounds for the identified target chemical compound or the identified desired flavor profile may be determined based on a similarity search.
    Type: Grant
    Filed: June 8, 2022
    Date of Patent: January 21, 2025
    Assignee: Notco Delaware, LLC
    Inventors: Hojin Kang, Kyohei Kaneko, Francisco Clavero, Aadit Patel, Isadora Nun, Karim Pichara
  • Patent number: 11644416
    Abstract: An artificial intelligence model receives a FTIR spectrum of a given ingredient to predict its protein secondary structure. The model includes three artificial modules, which generate three predicted values corresponding to structural categories (e.g., ?-helix, ?-sheet, and other) of the predicted secondary structure. Proteins may be compared for similarity based on predicted values corresponding to the structural categories of the predicted secondary structure.
    Type: Grant
    Filed: February 19, 2021
    Date of Patent: May 9, 2023
    Assignee: NotCo Delaware, LLC
    Inventors: Nathan O'Hara, Adil Yusuf, Julia Christin Berning, Francisca Villanueva, Rodrigo Contreras, Isadora Nun, Aadit Patel, Karim Pichara
  • Publication number: 20230139766
    Abstract: Techniques to suggest chemical compounds with a desired flavor profile or that can be used to recreate functional properties of a target chemical compound, using artificial intelligence, are disclosed. An artificial intelligence model is trained on source chemical compounds with known flavors. The artificial intelligence model learns relationships between the source chemical compounds and their known flavors and generates source chemical compound projected embeddings and true flavor projected embeddings. From either the source chemical compound projected embeddings or the true flavor projected embeddings, one or more chemical compounds for the identified target chemical compound or the identified desired flavor profile may be determined based on a similarity search.
    Type: Application
    Filed: June 8, 2022
    Publication date: May 4, 2023
    Inventors: Hojin Kang, Kyohei Kaneko, Francisco Clavero, Aadit Patel, Isadora Nun, Karim Pichara
  • Publication number: 20230099733
    Abstract: An artificial intelligence model receives a FTIR spectrum of a given ingredient to predict its protein secondary structure. The model includes three artificial modules, which generate three predicted values corresponding to structural categories (e.g., ?-helix, ?-sheet, and other) of the predicted secondary structure. Proteins may be compared for similarity based on predicted values corresponding to the structural categories of the predicted secondary structure.
    Type: Application
    Filed: November 28, 2022
    Publication date: March 30, 2023
    Inventors: Nathan O'Hara, Adil Yusuf, Julia Christin Berning, Francisca Villanueva, Rodrigo Contreras, Isadora Nun, Aadit Patel, Karim Pichara
  • Publication number: 20230021736
    Abstract: Techniques to generate experiment trials using artificial intelligence are disclosed. A training set for an experiment generator is continuously built up by using assessed experiment trials. The experiment generator is optimized using one of a plurality of optimization algorithms, depending on which mode experiment generator is to run in for an experiment. The mode is dependent on the experiment mode of the experiment. The experiment generator generates a batch of one or more experiment trials for the experiment. Any of the generated experiment trials may be tried or experimented by a user and may be updated with assessment data as an assessed experiment trial.
    Type: Application
    Filed: September 29, 2022
    Publication date: January 26, 2023
    Inventors: Kyohei Kaneko, Yoav Navon, Isadora Nun, Aadit Patel, Nathan O'Hara, Eugenio Herrera, Ofer Philip Korsunsky, Karim Pichara
  • Publication number: 20220406417
    Abstract: Techniques to suggest alternative chemical compounds that can be used to recreate or mimic a target flavor using artificial intelligence are disclosed. A neural network based model is trained on source chemical compounds and their corresponding flavors and odors. The neural network-based model learns compound embeddings of the source chemical compounds and a target chemical compound of a food item. From the compound embeddings, one or more chemical compounds that are closest to the target chemical compound may be determined by a distance metric. Each suggested chemical compound is an alternative that can be used to recreate functional features of the target chemical compound.
    Type: Application
    Filed: April 5, 2022
    Publication date: December 22, 2022
    Inventors: Kyohei Kaneko, Nathan O'Hara, Isadora Nun, Aadit Patel, Kavitakumari Solanki, Karim Pichara
  • Patent number: 11514350
    Abstract: Techniques to generate experiment trials using artificial intelligence are disclosed. A training set for an experiment generator is continuously built up by using assessed experiment trials. The experiment generator is optimized using one of a plurality of optimization algorithms, depending on which mode experiment generator is to run in for an experiment. The mode is dependent on the experiment mode of the experiment. The experiment generator generates a batch of one or more experiment trials for the experiment. Any of the generated experiment trials may be tried or experimented by a user and may be updated with assessment data as an assessed experiment trial.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: November 29, 2022
    Assignee: NotCo Delaware, LLC
    Inventors: Kyohei Kaneko, Yoav Navon, Isadora Nun, Aadit Patel, Nathan O'Hara, Eugenio Herrera, Ofer Philip Korsunsky, Karim Pichara
  • Publication number: 20220358387
    Abstract: Techniques to generate experiment trials using artificial intelligence are disclosed. A training set for an experiment generator is continuously built up by using assessed experiment trials. The experiment generator is optimized using one of a plurality of optimization algorithms, depending on which mode experiment generator is to run in for an experiment. The mode is dependent on the experiment mode of the experiment. The experiment generator generates a batch of one or more experiment trials for the experiment. Any of the generated experiment trials may be tried or experimented by a user and may be updated with assessment data as an assessed experiment trial.
    Type: Application
    Filed: May 4, 2021
    Publication date: November 10, 2022
    Inventors: Kyohei Kaneko, Yoav Navon, Isadora Nun, Aadit Patel, Nathan O'Hara, Eugenio Herrera, Ofer Philip Korsunsky, Karim Pichara
  • Patent number: 11404144
    Abstract: Techniques to suggest chemical compounds with a desired flavor profile or that can be used to recreate functional properties of a target chemical compound, using artificial intelligence, are disclosed. An artificial intelligence model is trained on source chemical compounds with known flavors. The artificial intelligence model learns relationships between the source chemical compounds and their known flavors and generates source chemical compound projected embeddings and true flavor projected embeddings. From either the source chemical compound projected embeddings or the true flavor projected embeddings, one or more chemical compounds for the identified target chemical compound or the identified desired flavor profile may be determined based on a similarity search.
    Type: Grant
    Filed: November 4, 2021
    Date of Patent: August 2, 2022
    Assignee: NotCo Delaware, LLC
    Inventors: Hojin Kang, Kyohei Kaneko, Francisco Clavero, Aadit Patel, Isadora Nun, Karim Pichara
  • Patent number: 11348664
    Abstract: Techniques to suggest alternative chemical compounds that can be used to recreate or mimic a target flavor using artificial intelligence are disclosed. A neural network based model is trained on source chemical compounds and their corresponding flavors and odors. The neural network-based model learns compound embeddings of the source chemical compounds and a target chemical compound of a food item. From the compound embeddings, one or more chemical compounds that are closest to the target chemical compound may be determined by a distance metric. Each suggested chemical compound is an alternative that can be used to recreate functional features of the target chemical compound.
    Type: Grant
    Filed: June 17, 2021
    Date of Patent: May 31, 2022
    Assignee: NotCo Delaware, LLC
    Inventors: Kyohei Kaneko, Nathan O'Hara, Isadora Nun, Aadit Patel, Kavitakumari Solanki, Karim Pichara
  • Publication number: 20220136966
    Abstract: An artificial intelligence model receives a FTIR spectrum of a given ingredient to predict its protein secondary structure. The model includes three artificial modules, which generate three predicted values corresponding to structural categories (e.g., ?-helix, ?-sheet, and other) of the predicted secondary structure. Proteins may be compared for similarity based on predicted values corresponding to the structural categories of the predicted secondary structure.
    Type: Application
    Filed: February 19, 2021
    Publication date: May 5, 2022
    Inventors: Nathan O'Hara, Adil Yusuf, Julia Christin Berning, Francisca Villanueva, Rodrigo Contreras, Isadora Nun, Aadit Patel, Karim Pichara
  • Patent number: 10962473
    Abstract: An artificial intelligence model receives a FTIR spectrum of a given ingredient to predict its protein secondary structure. The model includes three artificial modules, which generate three predicted values corresponding to structural categories (e.g., ?-helix, ?-sheet, and other) of the predicted secondary structure. Proteins may be compared for similarity based on predicted values corresponding to the structural categories of the predicted secondary structure.
    Type: Grant
    Filed: November 5, 2020
    Date of Patent: March 30, 2021
    Assignee: NOTCO DELAWARE, LLC
    Inventors: Nathan O'Hara, Adil Yusuf, Julia Christin Berning, Francisca Villanueva, Rodrigo Contreras, Isadora Nun, Aadit Patel, Karim Pichara