Patents by Inventor Isao Iwayama

Isao Iwayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230126268
    Abstract: A composite material including a metallic phase and plurality of particles dispersed in the metallic phase. The plurality of particles is a carbon-based material; the metallic phase contains a main element, a first element, and a second element; the coating layer of each of the plurality of particles is carbide of the second element. The main element is copper; the first element is a metallic element having a lower surface tension than copper; the second element is at least one selected from the group consisting of beryllium, silicon, titanium, chromium, zirconium, niobium, hafnium, and tantalum.
    Type: Application
    Filed: March 5, 2021
    Publication date: April 27, 2023
    Inventors: Ryota MATSUGI, Isao IWAYAMA, Takahiro NISHIMIZU, Chieko SOTA
  • Publication number: 20230037483
    Abstract: An aluminum alloy includes more than or equal to 1.0 mass% and less than or equal to 1.8 mass% of Si, more than or equal to 0.5 mass% and less than or equal to 1.2 mass% of Mg, more than or equal to 0.3 mass% and less than or equal to 0.8 mass% of Fe, more than or equal to 0.1 mass% and less than or equal to 0.4 mass% of Cu, more than or equal to 0.2 mass% and less than or equal to 0.5 mass% of Mn, more than or equal to 0 mass% and less than or equal to 0.3 mass% of Cr, at least one of more than or equal to 0.005 mass% and less than or equal to 0.6 mass% of Ni and more than or equal to 0.005 mass% and less than or equal to 0.6 mass% of Sn, Al, and an inevitable impurity.
    Type: Application
    Filed: January 21, 2021
    Publication date: February 9, 2023
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Ryota MATSUGI, Isao IWAYAMA, Tsukasa MATSUO, Hiroaki TAKAI
  • Publication number: 20220186347
    Abstract: A composite material contains a metallic phase, a non-metallic phase and a specific element. At least 90 mass % of the metallic phase is composed of at least one selected from the group consisting of Ag and Cu. The non-metallic phase includes a coated core material. The coated core material includes a core material and a carbide layer that covers at least a part of a surface of the core material. The core material contains at least one carbon-containing material selected from the group consisting of diamond, graphite, carbon fibers, and silicon carbide. The carbide layer contains a carbide of at least one metal element selected from the group consisting of Ti, Cr, Ta, and V. The specific element is at least one selected from the group consisting of Y and Mg. A total content of the specific element is 0.0004 mass % to 1.3 mass %.
    Type: Application
    Filed: March 13, 2020
    Publication date: June 16, 2022
    Applicants: Sumitomo Electric Industries, Ltd., A.L.M.T. Corp.
    Inventors: Isao IWAYAMA, Ryota MATSUGI, Takahiro NISHIMIZU
  • Publication number: 20210398877
    Abstract: A heat radiation member excellent in electrical insulation and better in thermal conduction is provided. The heat radiation member includes a substrate composed of a composite material containing diamond and a metallic phase, an insulating plate provided on at least a part of front and rear surfaces of the substrate and composed of an aluminum nitride, and a single bonding layer interposed between the substrate and the insulating plate, the heat radiation member having thermal conductivity not lower than 400 W/m·K.
    Type: Application
    Filed: August 30, 2019
    Publication date: December 23, 2021
    Applicants: Sumitomo Electric Industries, Ltd., A.L.M.T. Corp.
    Inventors: Ryota MATSUGI, Isao IWAYAMA, Chieko TANAKA, Hideaki MORIGAMI
  • Publication number: 20210381782
    Abstract: A composite member having an excellent heat resistance is provided. The composite member includes: a substrate composed of a composite material including a non-metal phase and a metal phase; and a metal layer that covers at least a portion of a surface of the substrate, wherein a metal included in each of the metal phase and the metal layer is mainly composed of Ag, and a ratio of a content of Cu to a total content of Ag and Cu in a boundary region of the metal layer with the substrate is less than or equal to 20 atomic %.
    Type: Application
    Filed: August 30, 2019
    Publication date: December 9, 2021
    Applicants: Sumitomo Electric Industries, Ltd., A.L.M.T. Corp.
    Inventors: Ryota MATSUGI, Isao IWAYAMA, Chieko TANAKA, Hideaki MORIGAMI
  • Patent number: 11147156
    Abstract: A composite member includes a substrate composed of a composite material containing a metal and a non-metal. One surface of the substrate has spherical warpage of which radius of curvature R is not smaller than 5000 mm and not greater than 35000 mm. A sphericity error is not greater than 10.0 ?m, the sphericity error being defined as an average distance between a plurality of measurement points on a contour of a warped portion of the substrate and approximate arcs defined by the plurality of measurement points. The substrate has a thermal conductivity not lower than 150 W/m·K and a coefficient of linear expansion not greater than 10 ppm/K.
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: October 12, 2021
    Assignees: Sumitomo Electric Industries, Ltd., AL.M.T. CORP.
    Inventors: Isao Iwayama, Shigeki Koyama, Masashi Okamoto, Yuta Inoue, Hiroyuki Kontani, Takehisa Yamamoto
  • Publication number: 20200370146
    Abstract: A composite material includes: coated particles, each of which includes a carbon-based particle made of a carbon-based substance and a carbide layer that covers at least a part of the surface of the carbon-based particle; and a copper phase that binds the coated particles to each other, wherein the carbide layer is made of a carbide containing at least one element selected from the group consisting of Si, Ti, Zr and Hf, and the average particle size of the carbon-based particles is 1 ?m or more and 100 ?m or less.
    Type: Application
    Filed: February 18, 2019
    Publication date: November 26, 2020
    Applicant: Sumitomo Electric Industries, Ltd.
    Inventors: Ryota MATSUGI, Isao IWAYAMA, Tetsuya KUWABARA
  • Patent number: 10553519
    Abstract: A heat radiating member includes: a composite portion composed of a composite material which contains particles of a satisfactorily thermally conductive material in a metal matrix; and a metal layer formed on at least one surface of the composite portion and composed of a metal. A method for producing a heat radiating member includes: a preparation step to prepare a composite material which contains particles of a satisfactorily thermally conductive material in a metal matrix; a powder arrangement step to dispose a metal powder composed of metal particles on at least one surface of the composite material; and a heating step to heat the composite material and the metal powder, with the metal powder disposed on the composite material, to form a metal layer composed of a metal of the metal powder on a composite portion composed of the composite material.
    Type: Grant
    Filed: September 1, 2015
    Date of Patent: February 4, 2020
    Assignees: A.L.M.T. Corp, Sumitomo Electric Industries, Ltd.
    Inventors: Tatsuya Morikawa, Takanori Kadokura, Isao Iwayama
  • Publication number: 20190297725
    Abstract: A composite member includes a substrate composed of a composite material containing a metal and a non-metal. One surface of the substrate has spherical warpage of which radius of curvature R is not smaller than 5000 mm and not greater than 35000 mm. A sphericity error is not greater than 10.0 ?m, the sphericity error being defined as an average distance between a plurality of measurement points on a contour of a warped portion of the substrate and approximate arcs defined by the plurality of measurement points. The substrate has a thermal conductivity not lower than 150 W/m·K and a coefficient of linear expansion not greater than 10 ppm/K.
    Type: Application
    Filed: November 8, 2017
    Publication date: September 26, 2019
    Applicants: Sumitomo Electric Industries, Ltd., A.L.M.T. Corp.
    Inventors: Isao IWAYAMA, Shigeki KOYAMA, Masashi OKAMOTO, Yuta INOUE, Hiroyuki KONTANI, Takehisa YAMAMOTO
  • Publication number: 20170287810
    Abstract: A heat radiating member includes: a composite portion composed of a composite material which contains particles of a satisfactorily thermally conductive material in a metal matrix; and a metal layer formed on at least one surface of the composite portion and composed of a metal. A method for producing a heat radiating member includes: a preparation step to prepare a composite material which contains particles of a satisfactorily thermally conductive material in a metal matrix; a powder arrangement step to dispose a metal powder composed of metal particles on at least one surface of the composite material; and a heating step to heat the composite material and the metal powder, with the metal powder disposed on the composite material, to form a metal layer composed of a metal of the metal powder on a composite portion composed of the composite material.
    Type: Application
    Filed: September 1, 2015
    Publication date: October 5, 2017
    Inventors: Tatsuya Morikawa, Takanori Kadokura, Isao Iwayama
  • Patent number: 9556501
    Abstract: A magnesium-based composite member is provided with a through hole through which a fastening member for attachment to a fixing target is to be inserted. A substrate is provided with a substrate hole through which the fastening member is to be inserted, and made of a composite material which is a composite of SiC and a matrix metal which is any of magnesium and a magnesium alloy. A receiving portion is attached to the substrate and made of a metal material different from the matrix metal. The receiving portion is provided with a receiving portion hole through which the fastening member is to be inserted, and at least a part of an inner circumferential surface of the through hole is formed from an inner circumferential surface of the receiving portion hole.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: January 31, 2017
    Assignees: Sumitomo Electric Industries, Ltd., A.L.M.T. Corp
    Inventors: Isao Iwayama, Taichiro Nishikawa, Yoshiyuki Takaki, Toshiya Ikeda, Shigeki Koyama
  • Patent number: 9347120
    Abstract: A composite member has a substrate made of a composite material having SiC combined with magnesium or a magnesium alloy, and has a warpage degree of not less than 0.01×10?3 and not more than 10×10?3, the warpage degree being defined as lmax/Dmax, where lmax being a difference between a maximum value and a minimum value of surface displacement of one surface of composite member measured along a longest side thereof, and Dmax being a length of the longest side. Thereby, a composite member capable of efficiently dissipating heat to an installation object, a heat-dissipating member using the composite member, and a semiconductor device having the heat-dissipating member are provided.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: May 24, 2016
    Assignees: SUMITOMO ELECTRIC INDUSTREIS, LTD., A.L.M.T. Corp.
    Inventors: Isao Iwayama, Taichiro Nishikawa, Toshiya Ikeda, Shigeki Koyama
  • Publication number: 20150225635
    Abstract: A composite member suitable for a heat radiation member of a semiconductor element and a method of manufacturing the same are provided. This composite member is a composite of magnesium or a magnesium alloy and SiC, and it has porosity lower than 3%. This composite member can be manufactured by forming an oxide film on a surface of raw material SiC, arranging coated SiC having the oxide film formed in a cast, and infiltrating this coated SiC aggregate with a molten metal (magnesium or the magnesium alloy). The porosity of the composite member can be lowered by improving wettability between SiC and the molten metal by forming the oxide film. According to this manufacturing method, a composite member having excellent thermal characteristics such as a coefficient of thermal expansion not lower than 4 ppm/K and not higher than 10 ppm/K and thermal conductivity not lower than 180 W/m·K can be manufactured.
    Type: Application
    Filed: April 10, 2015
    Publication date: August 13, 2015
    Inventors: Isao IWAYAMA, Yoshihiro NAKAI, Taichiro NISHIKAWA, Yoshiyuki TAKAKI, Misato KUSAKARI, Toshiya IKEDA
  • Patent number: 9028959
    Abstract: A composite member suitable for a heat radiation member of a semiconductor element and a method of manufacturing the same are provided. This composite member is a composite of magnesium or a magnesium alloy and SiC, and it has porosity lower than 3%. This composite member can be manufactured by forming an oxide film on a surface of raw material SiC, arranging coated SiC having the oxide film formed in a cast, and infiltrating this coated SiC aggregate with a molten metal (magnesium or the magnesium alloy). The porosity of the composite member can be lowered by improving wettability between SiC and the molten metal by forming the oxide film. According to this manufacturing method, a composite member having excellent thermal characteristics such as a coefficient of thermal expansion not lower than 4 ppm/K and not higher than 10 ppm/K and thermal conductivity not lower than 180 W/m·K can be manufactured.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: May 12, 2015
    Assignees: Sumitomo Electric Industries, Ltd., A. L. M. T. Corp.
    Inventors: Isao Iwayama, Yoshihiro Nakai, Taichiro Nishikawa, Yoshiyuki Takaki, Misato Kusakari, Toshiya Ikeda
  • Publication number: 20130328184
    Abstract: A composite member has a substrate made of a composite material having SiC combined with magnesium or a magnesium alloy, and has a warpage degree of not less than 0.01×10?3 and not more than 10×10?3, the warpage degree being defined as lmax/Dmax, where lmax being a difference between a maximum value and a minimum value of surface displacement of one surface of composite member measured along a longest side thereof, and Dmax being a length of the longest side. Thereby, a composite member capable of efficiently dissipating heat to an installation object, a heat-dissipating member using the composite member, and a semiconductor device having the heat-dissipating member are provided.
    Type: Application
    Filed: February 20, 2012
    Publication date: December 12, 2013
    Applicants: A.L.M.T. CORP., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Isao Iwayama, Taichiro Nishikawa, Toshiya Ikeda, Shigeki Koyama
  • Publication number: 20130009301
    Abstract: A magnesium-based composite member is provided with a through hole through which a fastening member for attachment to a fixing target is to be inserted. A substrate is provided with a substrate hole through which the fastening member is to be inserted, and made of a composite material which is a composite of SiC and a matrix metal which is any of magnesium and a magnesium alloy. A receiving portion is attached to the substrate and made of a metal material different from the matrix metal. The receiving portion is provided with a receiving portion hole through which the fastening member is to be inserted, and at least a part of an inner circumferential surface of the through hole is formed from an inner circumferential surface of the receiving portion hole.
    Type: Application
    Filed: March 16, 2011
    Publication date: January 10, 2013
    Applicants: A.L.M.T. Corp, Sumitomo Electric Industries, Ltd.
    Inventors: Isao Iwayama, Taichiro Nishikawa, Yoshiyuki Takaki, Toshiya Ikeda, Shigeki Koyama
  • Publication number: 20110256419
    Abstract: A composite member suitable for a heat radiation member of a semiconductor element and a method of manufacturing the same are provided. This composite member is a composite of magnesium or a magnesium alloy and SiC, and it has porosity lower than 3%. This composite member can be manufactured by forming an oxide film on a surface of raw material SiC, arranging coated SiC having the oxide film formed in a cast, and infiltrating this coated SiC aggregate with a molten metal (magnesium or the magnesium alloy). The porosity of the composite member can be lowered by improving wettability between SiC and the molten metal by forming the oxide film. According to this manufacturing method, a composite member having excellent thermal characteristics such as a coefficient of thermal expansion not lower than 4 ppm/K and not higher than 10 ppm/K and thermal conductivity not lower than 180 W/m·K can be manufactured.
    Type: Application
    Filed: October 2, 2009
    Publication date: October 20, 2011
    Inventors: Isao Iwayama, Yoshihiro Nakai, Taichiro Nishikawa, Yoshiyuki Takaki, Misato Kusakari, Toshiya Ikeda