Patents by Inventor Isao NAMIKAWA

Isao NAMIKAWA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8978815
    Abstract: An electric power steering apparatus includes a controller that controls, based on an assist command value, driving of a motor used to apply assist torque to a steering mechanism. The controller calculates a first assist component based on a steering torque transmitted to the steering mechanism and calculates a steered angle command value based on the steering torque. The controller executes feedback control to cause a steered angle of steerable wheels to agree with the steered angle command value, thereby calculating a second assist component. The controller calculates the assist command value based on a value obtained by adding the assist components. The controller estimates a grip factor of the wheels on a road surface on which the wheels are traveling based on the steering torque, a first assist torque determined based on the first assist component, and a second assist torque determined based on the second assist component.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: March 17, 2015
    Assignee: JTEKT Corporation
    Inventors: Isao Namikawa, Terutaka Tamaizumi
  • Patent number: 8977437
    Abstract: A target pinion angle computation unit computes a target pinion angle on the basis of a basic assist component and a steering torque, and computes the target pinion angle so as to rapidly increase a steering reaction force when it is determined based on the target pinion angle that a rack shaft of a rack-and-pinion mechanism reaches a position near a limit of a movable range of the rack shaft. In an EPS, a correction component for the basic assist component, which is necessary to increase the steering reaction force rapidly, is computed through execution of PID control for causing an actual pinion angle to coincide with the target pinion angle. Because the correction component is added to the basic assist component, the steering reaction force is increased rapidly when the rack shaft reaches the position near the limit of the movable range.
    Type: Grant
    Filed: September 11, 2013
    Date of Patent: March 10, 2015
    Assignee: JTEKT Corporation
    Inventors: Terutaka Tamaizumi, Hirozumi Eki, Masayuki Kita, Isao Namikawa
  • Publication number: 20150057892
    Abstract: A controller of an electric power steering system includes: a basic assist component computing unit (60) that computes a first assist component (Ta1*) based on a steering torque (Th); a steered angle command value computing unit (61) that computes a steered angle command value (?t*) based on the sum of the steering torque (Th) and the first assist component (Ta1*); and a steered angle feedback controller (62) that computes a second assist component (Ta2*) through feedback control on an actual steered angle (?t). The controller further includes: a correction component computing unit (65) that computes a correction component (Tc*) based on a steering angle (?s); and an assist command value computing unit (50) that computes an assist command value (Ta*) by subtracting the correction component (Tc*) from the sum of the first assist component (Ta1*) and the second assist component (Ta2*).
    Type: Application
    Filed: August 19, 2014
    Publication date: February 26, 2015
    Inventors: Terutaka TAMAIZUMI, Masayuki KITA, Isao NAMIKAWA, Hirozumi EKI
  • Publication number: 20150057890
    Abstract: In an electric power steering system, a vehicle reactive force model computes a correction spring reactive torque in such a manner that an elasticity component included in a steering reactive force is increased with an increase in a lateral acceleration. As the lateral acceleration increases, an increase in a basic drive torque is suppressed by a larger amount. By an amount by which the magnitude of the basic drive torque is suppressed, a target pinion angle computed by a target pinion angle computing unit decreases and a correction component for a basic assist component is decreased. A steering assist force is decreased, and a steering reactive force is increased with a decrease in the steering assist force. Thus, it is possible to obtain an appropriate steering reactive force based on the magnitude of the lateral acceleration.
    Type: Application
    Filed: August 19, 2014
    Publication date: February 26, 2015
    Inventors: Terutaka TAMAIZUMI, Masayuki KITA, Isao NAMIKAWA, Hirozumi EKI
  • Publication number: 20150057889
    Abstract: In the vehicle power steering system, a first assist torque component is computed based on a steering torque and a vehicle speed. A target steered angle is computed based on the first assist torque component and the steering torque, and a second assist torque component is set based on the target steered angle and an actual steered angle. Then, the vehicle power steering system assists a steering operation by applying an assist torque Tas corresponding to the first assist torque component and the second assist torque component. Further, an ideal steered angle at which a vehicle is able to keep travelling in a lane is set based on image information on the lane captured by a camera, and a correction value is computed based on the deviation between the ideal steered angle and the actual steered angle. Then, the target steered angle is corrected by the correction value.
    Type: Application
    Filed: August 8, 2014
    Publication date: February 26, 2015
    Inventors: Terutaka TAMAIZUMI, Hirozumi EKI, Masayuki KITA, Isao NAMIKAWA
  • Patent number: 8897965
    Abstract: An assisting command value calculating unit calculates a first assisting factor on the basis of the value of a torque differential control volume added to a basic assist control volume based on a steering torque value, while increasing or decreasing, on the basis of an assisting gradient, the torque differential control volume based on a torque differential value. The pinion angle F/B control unit calculates a pinion angle command value, capable of being converted to a steering angle of the steering wheel, on the basis of the steering torque and the first assisting factor, and executes rotational angle feedback control. The assisting command value calculating unit calculates an assisting command value on the basis of the value of a second assisting factor, calculated by the pinion angle F/B control unit, added to the first assisting factor.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: November 25, 2014
    Assignee: JTEKT Corporation
    Inventors: Terutaka Tamaizumi, Hirozumi Eki, Masayuki Kita, Isao Namikawa
  • Publication number: 20140343794
    Abstract: There is provided an electric power steering system that makes it possible to improve the driver's steering feel, and that includes a controller that controls driving of a motor. The controller computes a first assist component based on a steering torque. The controller computes a torque command value based on a basic drive torque that is the sum of the steering torque and the first assist component, and computes an assist compensation component through feedback control based on the torque command value. The controller computes a steered angle command value based on a value obtained by adding the assist compensation component to the basic drive torque, and computes a second assist component through feedback control based on the steered angle command value. The controller controls driving of the motor based on an assist command value that is the sum of the first assist component and the second assist component.
    Type: Application
    Filed: May 7, 2014
    Publication date: November 20, 2014
    Applicant: JTEKT CORPORATION
    Inventors: Terutaka TAMAIZUMI, Hirozumi EKI, Masayuki KITA, Isao NAMIKAWA, Jun HASEGAWA, Akihiko NISHIMURA
  • Patent number: 8874316
    Abstract: A current increase-decrease amount (?I?*) computed by a command current increase-decrease amount computing unit is added to an immediately preceding value (I?*(n?1)) of a command current value (I?*) in an adder. The command current value (I?*) obtained by the adder is given to a high/low limit limiter. The high/low limit limiter limits the command current value (I?*), obtained by the adder, to a value between a low limit value (?min (?min?0)) and a high limit value (?max (?max>?min)). A high limit value setting unit obtains the high limit value (?max) corresponding to the vehicle speed detected by the vehicle speed sensor, from a vehicle speed-vs.-high limit value map set by a map creating/updating unit, and sets the obtained high limit value (?max) in the high/low limit limiter.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: October 28, 2014
    Assignee: JTEKT Corporation
    Inventors: Yuji Kariatsumari, Terutaka Tamaizumi, Isao Namikawa
  • Publication number: 20140238769
    Abstract: A zero point change model executes banked road correspondence control when a vehicle travels on a banked road. By this control, a target turning angle when the total torque is zero can be changed from a neutral turning angle to a lower side of an inclined road surface. Thus, a steering angle of a steering wheel according to a banked road can be realized even if the driver does not apply steering torque during traveling on a banked road. Accordingly, the driver can obtain a suitable steering feeling when traveling on a banked road while achieving the target turning angle according to the total torque.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 28, 2014
    Applicant: Jtekt Corporation
    Inventors: Terutaka TAMAIZUMI, Hirozumi EKI, Masayuki KITA, Isao NAMIKAWA
  • Publication number: 20140238770
    Abstract: An electric power steering apparatus includes a controller that controls, based on an assist command value, driving of a motor used to apply assist torque to a steering mechanism. The controller calculates a first assist component based on a steering torque transmitted to the steering mechanism and calculates a steered angle command value based on the steering torque. The controller executes feedback control to cause a steered angle of steerable wheels to agree with the steered angle command value, thereby calculating a second assist component. The controller calculates the assist command value based on a value obtained by adding the assist components. The controller estimates a grip factor of the wheels on a road surface on which the wheels are traveling based on the steering torque, a first assist torque determined based on the first assist component, and a second assist torque determined based on the second assist component.
    Type: Application
    Filed: February 18, 2014
    Publication date: August 28, 2014
    Applicant: JTEKT CORPORATION
    Inventors: Isao NAMIKAWA, Terutaka TAMAIZUMI
  • Publication number: 20140238768
    Abstract: An end determination unit determines that a steering apparatus is in an end touching state when an angle deviation, which is a difference between an actual turning angle and a target turning angle, exceeds a threshold. This angle deviation exceeds the threshold before a large axial force is generated in a steering shaft. Accordingly, is it possible to determine that the steering apparatus is in the end touching state more quickly.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 28, 2014
    Applicant: JTEKT CORPORATION
    Inventors: Terutaka TAMAIZUMI, Hirozumi EKI, Masayuki KITA, Isao NAMIKAWA
  • Patent number: 8791659
    Abstract: A F/B gain control unit computes a first change component by executing torque feedback control based on a torque deviation using a feedback gain that is computed by a F/B gain variable control unit. The F/B gain variable control unit computes one of two different feedback gains that correspond to a “first computation mode” in which the first change component is used as an addition angle and a “second computation mode” in which a value obtained by correcting the first change component by an estimated motor rotation angular velocity is used as the addition angle, respectively. A feedback gain used in the first computation mode is set such that a response at the feedback gain is higher than that at a feedback gain used in the second computation mode.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: July 29, 2014
    Assignee: JTEKT Corporation
    Inventors: Isao Namikawa, Terutaka Tamaizumi, Yuji Kariatsumari
  • Patent number: 8775027
    Abstract: An electric power steering system includes a motor control device that controls, based on an assist command value, driving of a motor that gives an assist torque to a steering mechanism. The motor control device computes a first assist component based on a steering torque and a vehicle speed. A steered-angle command value is computed based on the steering torque and the first assist component, and a second assist component is computed by performing a feedback control that matches the steered angle with the steered-angle command value. The motor control device adds the second assist component to the first assist component so as to compute an assist command value. The motor control device includes a road information compensation portion that decreases an absolute value of the second assist component included in the assist command value when a skid is detected by a vehicle state detecting portion.
    Type: Grant
    Filed: August 2, 2013
    Date of Patent: July 8, 2014
    Assignee: JTEKT Corporation
    Inventors: Terutaka Tamaizumi, Hirozumi Eki, Masayuki Kita, Isao Namikawa
  • Publication number: 20140081524
    Abstract: A target pinion angle computation unit computes a target pinion angle on the basis of a basic assist component and a steering torque, and computes the target pinion angle so as to rapidly increase a steering reaction force when it is determined based on the target pinion angle that a rack shaft of a rack-and-pinion mechanism reaches a position near a limit of a movable range of the rack shaft. In an. EPS, a correction component for the basic assist component, which is necessary to increase the steering reaction force rapidly, is computed through execution of PID control for causing an actual pinion angle to coincide with the target pinion angle. Because the correction component is added to the basic assist component, the steering reaction force is increased rapidly when the rack shaft reaches the position near the limit of the movable range.
    Type: Application
    Filed: September 11, 2013
    Publication date: March 20, 2014
    Applicant: JTEKT CORPORATION
    Inventors: Terutaka TAMAIZUMI, Hirozumi EKI, Masayuki KITA, Isao NAMIKAWA
  • Publication number: 20140058629
    Abstract: An electric power steering system includes a motor control device that controls, based on an assist command value, driving of a motor that gives an assist torque to a steering mechanism. The motor control device computes a first assist component based on a steering torque and a vehicle speed. A steered-angle command value is computed based on the steering torque and the first assist component, and a second assist component is computed by performing a feedback control that matches the steered angle with the steered-angle command value. The motor control device adds the second assist component to the first assist component so as to compute an assist command value. The motor control device includes a road information compensation portion that decreases an absolute value of the second assist component included in the assist command value when a skid is detected by a vehicle state detecting portion.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 27, 2014
    Applicant: JTEKT CORPORATION
    Inventors: Terutaka TAMAIZUMI, Hirozumi EKI, Masayuki KITA, Isao NAMIKAWA
  • Publication number: 20130311044
    Abstract: An assisting command value calculating unit calculates a first assisting factor on the basis of the value of a torque differential control volume added to a basic assist control volume based on a steering torque value, while increasing or decreasing, on the basis of an assisting gradient, the torque differential control volume based on a torque differential value. The pinion angle F/B control unit calculates a pinion angle command value, capable of being converted to a steering angle of the steering wheel, on the basis of the steering torque and the first assisting factor, and executes rotational angle feedback control. The assisting command value calculating unit calculates an assisting command value on the basis of the value of a second assisting factor, calculated by the pinion angle F/B control unit, added to the first assisting factor.
    Type: Application
    Filed: March 28, 2012
    Publication date: November 21, 2013
    Applicant: JTEKT CORPORATION
    Inventors: Terutaka Tamaizumi, Hirozumi Eki, Masayuki Kita, Isao Namikawa
  • Publication number: 20130049652
    Abstract: A F/B gain control unit computes a first change component by executing torque feedback control based on a torque deviation using a feedback gain that is computed by a F/B gain variable control unit. The F/B gain variable control unit computes one of two different feedback gains that correspond to a “first computation mode” in which the first change component is used as an addition angle and a “second computation mode” in which a value obtained by correcting the first change component by an estimated motor rotation angular velocity is used as the addition angle, respectively. A feedback gain used in the first computation mode is set such that a response at the feedback gain is higher than that at a feedback gain used in the second computation mode.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 28, 2013
    Applicant: JTEKT CORPORATION
    Inventors: Isao NAMIKAWA, Terutaka TAMAIZUMI, Yuji KARIATSUMARI
  • Publication number: 20120046832
    Abstract: A current increase-decrease amount (?I?*) computed by a command current increase-decrease amount computing unit is added to an immediately preceding value (I?*(n?1)) of a command current value (I?*) in an adder. The command current value (I?*) obtained by the adder is given to a high/low limit limiter. The high/low limit limiter limits the command current value (I?*), obtained by the adder, to a value between a low limit value (?min (?min?0)) and a high limit value (?max (?max>?min)). A high limit value setting unit obtains the high limit value (?max) corresponding to the vehicle speed detected by the vehicle speed sensor, from a vehicle speed-vs.-high limit value map set by a map creating/updating unit, and sets the obtained high limit value (?max) in the high/low limit limiter.
    Type: Application
    Filed: August 8, 2011
    Publication date: February 23, 2012
    Applicant: JTEKT CORPORATION
    Inventors: Yuji KARIATSUMARI, Terutaka TAMAIZUMI, Isao NAMIKAWA