Patents by Inventor Ishan CHATTERJEE

Ishan CHATTERJEE has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11966044
    Abstract: This document relates to an optical device that uses adaptive optics as part of an optical system. The adaptive optics can be used to correct light rays that correspond to a portion of an eye box based on information received from an eye-tracking unit, and can also correct for aberrations in the optics in the optical device. The adaptive optics include corrective elements that can be modified using modifying elements to correct the angle of light rays, such that rays associated with a specific pupil position and gaze direction of a user's eye can be made parallel and ensure a high quality image is viewed by the user.
    Type: Grant
    Filed: October 17, 2022
    Date of Patent: April 23, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Andreas Georgiou, Alfonsus D. Lunardhi, Joel Steven Kollin, Bernard C. Kress, Ishan Chatterjee, Mario Possiwan
  • Patent number: 11940628
    Abstract: Examples are disclosed that relate to display devices having a common light path region. One example provides a display device comprising a light source configured to emit illumination light along an illumination path, and a spatial light modulator configured to modulate the illumination light and emit the modulated illumination light as image light along an imaging path, wherein at least a portion of the illumination path and at least a portion of the imaging path extend through a common light path region. The display device further comprises one or more optical elements positioned within the common light path region, at least one optical element being configured to guide the illumination light as the illumination light travels through the common light path region toward the spatial light modulator, and shape the image light as the image light travels through the common light path region.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: March 26, 2024
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ishan Chatterjee, Dmitry Reshidko
  • Publication number: 20240085714
    Abstract: The present disclosure describes near-eye display systems including an array of projectors and a one-dimensional exit pupil expander. The array of projectors can be arranged along a first dimension and can output image light towards an input coupler within a waveguide that provides one-dimensional exit pupil expansion. In some implementations, arrays of monochromatic projectors are implemented and arranged in offset columns. The input coupler in-couples the image light from the array of projectors into a TIR path within the waveguide. Different optical elements, including diffractive and reflective optics, may be implemented as the input coupler. The image light travels within the waveguide until it interacts with an output coupler. Upon interaction with the output coupler, the image light is expanded in a second dimension transverse to the first dimension and is coupled out of the waveguide.
    Type: Application
    Filed: September 14, 2022
    Publication date: March 14, 2024
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Joel Steven KOLLIN, Andreas GEORGIOU, Ishan CHATTERJEE, Bernard Charles KRESS, Maria Esther PACE, Mario POSSIWAN
  • Patent number: 11852824
    Abstract: Examples are disclosed that relate to using an array of hot mirrors in an eye-imaging system. One example provides a head-mounted display system, comprising a frame, an eye-imaging camera supported on the frame, a switchable hot mirror array comprising a plurality of switchable hot mirrors configured to direct light reflecting from an eye toward the eye-imaging camera, and a controller configured to control switching of a reflectivity of each of the plurality of switchable hot mirrors.
    Type: Grant
    Filed: April 4, 2022
    Date of Patent: December 26, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Benjamin Eliot Lundell, Joel Steven Kollin, Ishan Chatterjee, Maria Esther Pace, Mark Theodore Bolas, Bernard Charles Kress, Robert Thomas Held, Andreas Georgiou, Christopher Charles Aholt
  • Publication number: 20230314803
    Abstract: Examples are disclosed that relate to using an array of hot mirrors in an eye-imaging system. One example provides a head-mounted display system, comprising a frame, an eye-imaging camera supported on the frame, a switchable hot mirror array comprising a plurality of switchable hot mirrors configured to direct light reflecting from an eye toward the eye-imaging camera, and a controller configured to control switching of a reflectivity of each of the plurality of switchable hot mirrors.
    Type: Application
    Filed: April 4, 2022
    Publication date: October 5, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Benjamin Eliot LUNDELL, Joel Steven KOLLIN, Ishan CHATTERJEE, Maria Esther PACE, Mark Theodore BOLAS, Bernard Charles KRESS, Robert Thomas HELD, Andreas GEORGIOU, Christopher Charles AHOLT
  • Publication number: 20230314816
    Abstract: A display engine adapted for use in a head-mounted display (HMD) device includes a reflective liquid crystal on silicon (LCoS) spatial light modulator (SLM) that is illuminated using a backlight illumination module and a pair of optical prisms providing a total internal reflection (TIR) function. In an illustrative mixed-reality embodiment, the TIR prism pair guides light to the LCoS SLM from the backlight illumination module and projects virtual images reflected from the LCoS SLM, through projection optics, to a diffractive waveguide combiner for viewing by an HMD user.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Ishan CHATTERJEE, Dmitry RESHIDKO, Bernard Charles KRESS
  • Publication number: 20230314804
    Abstract: An illumination system for non-emissive polarization-sensitive microdisplays such as LCoS is implemented in a waveguide that guides illumination light from an unpolarized source to the microdisplay while simultaneously recycling light of the wrong polarization for the microdisplay to improve illumination efficiency. Polarization recycling may be performed at one or more of an input coupler that in-couples illumination light to the waveguide, the waveguide itself, or an output coupler that out-couples the illumination light from the waveguide to the microdisplay.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 5, 2023
    Inventors: Ishan CHATTERJEE, Poon Yarn CHEE, Joel Steven KOLLIN, Fei CHEN
  • Publication number: 20230273432
    Abstract: Slanted surface relief gratings for use in an optical display system in an HMD device are replicated in a manufacturing process that utilizes non-contact optical proximity recording into a specialized photo-sensitive resin that is disposed over a waveguide substrate. The recording process comprises selective resin exposure to ultraviolet light through a mask to spatially record grating structures by interferential exposure and polymerization. Subsequent resin development evacuates unexposed resin down to the waveguide substrate to remove flat surfaces, referred to as a bias layer, that remain in the grating trenches after exposure. The resin development reduces Fresnel reflections that could otherwise be induced at the media interface between the bias layer and the waveguide substrate. Fresnel reflections may cause a loss of diffraction efficiency and thereby reduce the field of view that may be guided by the SRGs in the optical display system.
    Type: Application
    Filed: February 3, 2022
    Publication date: August 31, 2023
    Inventors: Bernard Charles KRESS, Ishan CHATTERJEE, Joel Steven KOLLIN, Maria Esther PACE
  • Patent number: 11722654
    Abstract: The techniques disclosed herein may be utilized to detect, measure, and/or compensate for misalignments of a display that may occur after manufacturing. A Talbot sensor is described that includes a diffraction device and an image sensor. Captured images from the image sensor include pixel data values that include bright and dark spots that represent a diffraction pattern associated with the Talbot sensor. A demodulator multiplies the pixel data values with sine and cosine reference images to generate averaged in-phase and quadrature values, which can be used to determine a phase angle for incident light on the Talbot sensor. Phase angle changes over time indicate changes in the alignment of the display, which may be corrected by display parameter manipulation. The resulting devices, systems and methods provide for portable solutions, with reduced cost of manufacturing, reduced part costs, and reduced complexity.
    Type: Grant
    Filed: May 31, 2022
    Date of Patent: August 8, 2023
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Michael Scott Sutton, James P. Terrell, Jr., Dmitriy Churin, Ishan Chatterjee, Rayna Demaster-Smith
  • Publication number: 20230244077
    Abstract: One disclosed example provides a near-eye display device. The near-eye display device comprises an eye tracking system configured to determine a position of an eye of a user relative to the near-eye display device, and a waveguide including at least an input coupler and an output coupler, the output coupler including a plurality of zones, each zone activatable via a dynamically controllable output coupling element of the zone. The near-eye display device further comprises an image source configured to output image light to the input coupler, and a controller configured to selectively activate one or more zones of the output coupler based at least on the position of the eye.
    Type: Application
    Filed: January 31, 2022
    Publication date: August 3, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Joel Steven KOLLIN, Ishan CHATTERJEE, Benjamin Eliot LUNDELL, Christopher Charles AHOLT, Maria Esther PACE, Andreas GEORGIOU, Robert Thomas HELD, Mark Theodore BOLAS
  • Publication number: 20230236417
    Abstract: Examples are disclosed that relate to a compact optical systems comprising SLMs. One example provides a projection system comprising an illumination stage including a light emitting diode (LED) array. The LED array comprises a plurality of red LEDs, a plurality of green LEDs, and a plurality of blue LEDs. The illumination stage further comprises an illumination stage optical system configured to control an angular extent of light emitted by the LED array and homogenize the light emitted by the LED array. The projection system further comprises an image forming stage configured to form an image from light output by the illumination stage, the image forming stage comprising a spatial light modulator (SLM) configured to spatially modulate the light output by the illumination stage to form an image, and one or more projection optics configured to project the image formed by the spatial light modulator.
    Type: Application
    Filed: January 24, 2022
    Publication date: July 27, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Ishan CHATTERJEE, Fei CHEN, Bernard Charles KRESS, Maria Esther PACE, Joel Steven KOLLIN, Scott Jeffrey WOLTMAN
  • Publication number: 20230228996
    Abstract: Examples are disclosed that relate to display devices having a common light path region. One example provides a display device comprising a light source configured to emit illumination light along an illumination path, and a spatial light modulator configured to modulate the illumination light and emit the modulated illumination light as image light along an imaging path, wherein at least a portion of the illumination path and at least a portion of the imaging path extend through a common light path region. The display device further comprises one or more optical elements positioned within the common light path region, at least one optical element being configured to guide the illumination light as the illumination light travels through the common light path region toward the spatial light modulator, and shape the image light as the image light travels through the common light path region.
    Type: Application
    Filed: January 20, 2022
    Publication date: July 20, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Ishan Chatterjee, Dmitry RESHIDKO
  • Patent number: 11693248
    Abstract: A display engine adapted for use in a head-mounted display (HMD) device includes a reflective liquid crystal on silicon (LCoS) spatial light modulator (SLM) that is illuminated using a backlight illumination module and a pair of optical prisms providing a total internal reflection (TIR) function. In an illustrative mixed-reality embodiment, the TIR prism pair guides light to the LCoS SLM from the backlight illumination module and projects virtual images reflected from the LCoS SLM, through projection optics, to a diffractive waveguide combiner for viewing by an HMD user.
    Type: Grant
    Filed: January 20, 2022
    Date of Patent: July 4, 2023
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ishan Chatterjee, Dmitry Reshidko, Bernard Charles Kress
  • Publication number: 20230100656
    Abstract: This document relates to head mounted display devices. One example can include a housing configured to be positioned relative to a head and eye of a user and a transparent visual assembly positioned by the housing in front of the user's eye and comprising multiple eye tracking illuminators distributed across the transparent visual assembly and configured to emit non-visible light and multiple eye tracking detectors distributed across the transparent visual assembly and configured to detect the non-visible light reflected back from the eye of the user.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 30, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Andreas GEORGIOU, Maria PACE, Bernard KRESS, Ishan CHATTERJEE, Joel KOLLIN, Mario POSSIWAN
  • Publication number: 20230031857
    Abstract: This document relates to an optical device that uses adaptive optics as part of an optical system. The adaptive optics can be used to correct light rays that correspond to a portion of an eye box based on information received from an eye-tracking unit, and can also correct for aberrations in the optics in the optical device. The adaptive optics include corrective elements that can be modified using modifying elements to correct the angle of light rays, such that rays associated with a specific pupil position and gaze direction of a user's eye can be made parallel and ensure a high quality image is viewed by the user.
    Type: Application
    Filed: October 17, 2022
    Publication date: February 2, 2023
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: Andreas Georgiou, Alfonsus D. Lunardhi, Joel Steven Kollin, Bernard C. Kress, Ishan Chatterjee, Mario Possiwan
  • Patent number: 11500200
    Abstract: This document relates to an optical device that uses adaptive optics as part of an optical system. The adaptive optics can be used to correct light rays that correspond to a portion of an eye box based on information received from an eye-tracking unit, and can also correct for aberrations in the optics in the optical device. The adaptive optics include corrective elements that can be modified using modifying elements to correct the angle of light rays, such that rays associated with a specific pupil position and gaze direction of a user's eye can be made parallel and ensure a high quality image is viewed by the user.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: November 15, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Andreas Georgiou, Alfonsus D. Lunardhi, Joel Steven Kollin, Bernard C. Kress, Ishan Chatterjee, Mario Possiwan
  • Patent number: 11467406
    Abstract: This document relates to an optical device using waveguide that can enable propagation of large field of view images by use of metasurfaces, without the necessity of increasing the reflective index associated with the waveguide. An optical assembly can generate a compressed image corresponding to a wide field of view in order to ensure that the image can propagate through the waveguide according to TIR limits of the waveguide. The compressed image can be provided to a standard grating in-coupler, and can then be expanded by a metasurface out-coupler of the optical device to reproduce the wide field of view.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: October 11, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Ishan Chatterjee, Bernard Charles Kress
  • Patent number: 11467320
    Abstract: This document relates to head mounted display devices. One example can include a layer of individually controllable pixels that can be energized to emit light and a layer of lenses that are physically aligned over the pixels. The example can also include a layer of shutters interposed between the pixels and the lenses and configured to be independently transitioned between a transmissive state and an opaque state to limit paths of the emitted light that reach the layer of lenses.
    Type: Grant
    Filed: December 24, 2020
    Date of Patent: October 11, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Joel Steven Kollin, Andreas Georgiou, Brian K. Guenter, Charles Thomas Hewitt, Mario Possiwan, Ishan Chatterjee
  • Patent number: 11448883
    Abstract: This document relates to an optical device using waveguide that can enable propagation of large field of view images by use of metasurfaces, without the necessity of increasing the reflective index associated with the waveguide. The metasurfaces can further provide image distortion correction to images to account for possible distortion introduced by an optical assembly. The metasurfaces can also be used to create a foveated image, in order to achieve a larger field of view for the image.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: September 20, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Bernard Charles Kress, Ishan Chatterjee
  • Patent number: 11435503
    Abstract: This document relates to head mounted display devices. In one example the head mounted display device includes a light engine including an array of individually controllable pixels that can be energized to emit light. The example also includes an optical assembly physically aligned with the light engine and including a set of focusing elements facing toward the light engine and a different set of focusing elements facing away from the light engine.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: September 6, 2022
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Andreas Georgiou, Alfonsus D. Lunardhi, Joel Steven Kollin, Bernard C. Kress, Ishan Chatterjee, Mario Possiwan, Charles Thomas Hewitt, Brian K. Guenter, Maria Pace, Jacob Hadnett-Hunter