Patents by Inventor Ishwar Kulkarni

Ishwar Kulkarni has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11908203
    Abstract: LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. Improved techniques for processing the point cloud data that has been collected are provided. The improved techniques include mapping one or more point cloud data points into a depth map, the one or more point cloud data points being generated using one or more sensors; determining one or more mapped point cloud data points within a bounded area of the depth map, and detecting, using one or more processing units and for an environment surrounding a machine corresponding to the one or more sensors, a location of one or more entities based on the one or more mapped point cloud data points.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: February 20, 2024
    Assignee: NVIDIA Corporation
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Publication number: 20220237925
    Abstract: LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improved techniques for processing the point cloud data that has been collected. The improved techniques include mapping one or more point cloud data points into a depth map, the one or more point cloud data points being generated using one or more sensors; determining one or more mapped point cloud data points within a bounded area of the depth map, and detecting, using one or more processing units and for an environment surrounding a machine corresponding to the one or more sensors, a location of one or more entities based on the one or more mapped point cloud data points.
    Type: Application
    Filed: April 12, 2022
    Publication date: July 28, 2022
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Publication number: 20220138568
    Abstract: In various examples, reinforcement learning is used to train at least one machine learning model (MLM) to control a vehicle by leveraging a deep neural network (DNN) trained on real-world data by using imitation learning to predict movements of one or more actors to define a world model. The DNN may be trained from real-world data to predict attributes of actors, such as locations and/or movements, from input attributes. The predictions may define states of the environment in a simulator, and one or more attributes of one or more actors input into the DNN may be modified or controlled by the simulator to simulate conditions that may otherwise be unfeasible. The MLM(s) may leverage predictions made by the DNN to predict one or more actions for the vehicle.
    Type: Application
    Filed: November 1, 2021
    Publication date: May 5, 2022
    Inventors: Nikolai Smolyanskiy, Alexey Kamenev, Lirui Wang, David Nister, Ollin Boer Bohan, Ishwar Kulkarni, Fangkai Yang, Julia Ng, Alperen Degirmenci, Ruchi Bhargava, Rotem Aviv
  • Patent number: 11301697
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improved techniques for processing the point cloud data that has been collected. The improved techniques include mapping 3D point cloud data points into a 2D depth map, fetching a group of the mapped 3D point cloud data points that are within a bounded window of the 2D depth map; and generating geometric space parameters based on the group of the mapped 3D point cloud data points. The generated geometric space parameters may be used for object motion, obstacle detection, freespace detection, and/or landmark detection for an area surrounding a vehicle.
    Type: Grant
    Filed: July 24, 2020
    Date of Patent: April 12, 2022
    Assignee: Nvidia Corporation
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Publication number: 20210295171
    Abstract: In various examples, past location information corresponding to actors in an environment and map information may be applied to a deep neural network (DNN)—such as a recurrent neural network (RNN)—trained to compute information corresponding to future trajectories of the actors. The output of the DNN may include, for each future time slice the DNN is trained to predict, a confidence map representing a confidence for each pixel that an actor is present and a vector field representing locations of actors in confidence maps for prior time slices. The vector fields may thus be used to track an object through confidence maps for each future time slice to generate a predicted future trajectory for each actor. The predicted future trajectories, in addition to tracked past trajectories, may be used to generate full trajectories for the actors that may aid an ego-vehicle in navigating the environment.
    Type: Application
    Filed: March 19, 2020
    Publication date: September 23, 2021
    Inventors: Alexey Kamenev, Nikolai Smolyanskiy, Ishwar Kulkarni, Ollin Boer Bohan, Fangkai Yang, Alperen Degirmenci, Ruchi Bhargava, Urs Muller, David Nister, Rotem Aviv
  • Publication number: 20200357160
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improved techniques for processing the point cloud data that has been collected. The improved techniques include mapping 3D point cloud data points into a 2D depth map, fetching a group of the mapped 3D point cloud data points that are within a bounded window of the 2D depth map; and generating geometric space parameters based on the group of the mapped 3D point cloud data points. The generated geometric space parameters may be used for object motion, obstacle detection, freespace detection, and/or landmark detection for an area surrounding a vehicle.
    Type: Application
    Filed: July 24, 2020
    Publication date: November 12, 2020
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Patent number: 10776983
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include analyzing point cloud data using trajectory equations, depth maps, and texture maps. The processing improvements also include representing the point cloud data by a two dimensional depth map or a texture map and using the depth map or texture map to provide object motion, obstacle detection, freespace detection, and landmark detection for an area surrounding a vehicle.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 15, 2020
    Assignee: Nvidia Corporation
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Patent number: 10769840
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include using a three dimensional polar depth map to assist in performing nearest neighbor analysis on point cloud data for object detection, trajectory detection, freespace detection, obstacle detection, landmark detection, and providing other geometric space parameters.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: September 8, 2020
    Assignee: Nvidia Corporation
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Publication number: 20190266779
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include using a three dimensional polar depth map to assist in performing nearest neighbor analysis on point cloud data for object detection, trajectory detection, freespace detection, obstacle detection, landmark detection, and providing other geometric space parameters.
    Type: Application
    Filed: July 31, 2018
    Publication date: August 29, 2019
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister
  • Publication number: 20190266736
    Abstract: Various types of systems or technologies can be used to collect data in a 3D space. For example, LiDAR (light detection and ranging) and RADAR (radio detection and ranging) systems are commonly used to generate point cloud data for 3D space around vehicles, for such functions as localization, mapping, and tracking. This disclosure provides improvements for processing the point cloud data that has been collected. The processing improvements include analyzing point cloud data using trajectory equations, depth maps, and texture maps. The processing improvements also include representing the point cloud data by a two dimensional depth map or a texture map and using the depth map or texture map to provide object motion, obstacle detection, freespace detection, and landmark detection for an area surrounding a vehicle.
    Type: Application
    Filed: July 31, 2018
    Publication date: August 29, 2019
    Inventors: Ishwar Kulkarni, Ibrahim Eden, Michael Kroepfl, David Nister