Patents by Inventor Isidore LIEBERMAN

Isidore LIEBERMAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9814535
    Abstract: A robotic system for performing minimally invasive spinal stabilization, using two screws inserted in oblique trajectories from an inferior vertebra pedicle into the adjacent superior vertebra body. The procedure is less traumatic than such procedures performed using open back surgery, by virtue of the robot used to guide the surgeon along a safe trajectory, avoiding damage to nerves surrounding the vertebrae. The robot arm is advantageous since no access is provided in a minimally invasive procedure for direct viewing of the operation site, and the accuracy required for oblique entry can readily be achieved only using robotic control. This robotic system also obviates the need for a large number of fluoroscope images to check drill insertion position relative to the surrounding nerves. Disc cleaning tools with flexible wire heads are also described. The drilling trajectory is determined by comparing fluoroscope images to preoperative images showing the planned path.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: November 14, 2017
    Assignee: Mazor Robotics Ltd.
    Inventors: Yossef Bar, Eli Zehavi, Isidore Lieberman, Moshe Shoham
  • Publication number: 20170071682
    Abstract: A robotic system for performing minimally invasive spinal stabilization, using two screws inserted in oblique trajectories from an inferior vertebra pedicle into the adjacent superior vertebra body. The procedure is less traumatic than such procedures performed using open back surgery, by virtue of the robot used to guide the surgeon along a safe trajectory, avoiding damage to nerves surrounding the vertebrae. The robot arm is advantageous since no access is provided in a minimally invasive procedure for direct viewing of the operation site, and the accuracy required for oblique entry can readily be achieved only using robotic control. This robotic system also obviates the need for a large number of fluoroscope images to check drill insertion position relative to the surrounding nerves. Disc cleaning tools with flexible wire heads are also described. The drilling trajectory is determined by comparing fluoroscope images to preoperative images showing the planned path.
    Type: Application
    Filed: November 8, 2016
    Publication date: March 16, 2017
    Inventors: Yossef BAR, Eli ZEHAVI, Isidore LIEBERMAN, Moshe SHOHAM
  • Publication number: 20150196326
    Abstract: A robotic system for performing minimally invasive spinal stabilization, using two screws inserted in oblique trajectories from an inferior vertebra pedicle into the adjacent superior vertebra body. The procedure is less traumatic than such procedures performed using open back surgery, by virtue of the robot used to guide the surgeon along a safe trajectory, avoiding damage to nerves surrounding the vertebrae. The robot arm is advantageous since no access is provided in a minimally invasive procedure for direct viewing of the operation site, and the accuracy required for oblique entry can readily be achieved only using robotic control. This robotic system also obviates the need for a large number of fluoroscope images to check drill insertion position relative to the surrounding nerves. Disc cleaning tools with flexible wire heads are also described. The drilling trajectory is determined by comparing fluoroscope images to preoperative images showing the planned path.
    Type: Application
    Filed: March 10, 2015
    Publication date: July 16, 2015
    Inventors: Yossef BAR, Eli ZEHAVI, Isidore LIEBERMAN, Moshe SHOHAM