Patents by Inventor Islam Ashry

Islam Ashry has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11956016
    Abstract: A hybrid sensing-communication system includes a multicore optical fiber that includes first and second cores, a first communication device optically coupled to a first end of the first core of the multicore optical fiber, a second communication device optically coupled to a second end of the first core of the multicore optical fiber, a first sensing device optically coupled to a first end of the second core of the multicore optical fiber, and a second sensing device optically coupled to a second end of the second core of the multicore optical fiber. The first and second communication devices exclusively exchange communication data along the first core, the first and second sensing devices exclusively exchange sensing data along the second core, and the communication data is different from the sensing data.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: April 9, 2024
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Boon Siew Ooi, Islam Ashry, Yuan Mao
  • Publication number: 20230314731
    Abstract: A compounded light-focusing optical element is configured to focus light, and the compounded light-focusing optical element includes a body having a first, flat, end face and a second, curved end face, the second, curved end face being opposite to the first, flat end face, and plural optical fibers extending through the body, from the first, flat end face to the second, curved end face. The plural optical fibers are fused to each other to form the body, and end faces of the plural optical fibers, corresponding to the second, curved end face, are pointing in different directions.
    Type: Application
    Filed: September 10, 2021
    Publication date: October 5, 2023
    Inventors: Boon S. OOI, Omar ALKHAZRAGI, Abderrahmen TRICHILI, Islam ASHRY, Tien Khee NG, Mohamed-Slim ALOUINI
  • Patent number: 11754532
    Abstract: An optical fiber distributed acoustic sensor (DAS) system for detecting a red palm weevil and/or its larvae inside a tree. The system includes an optical fiber that is configured to be placed next to a tree; and a DAS box optically connected to the optical fiber and configured to receive a reflected light from the optical fiber. The DAS box includes electronics that extracts from the reflected light a frequency in a range of [400 Hz, 4 kHz], and sends a message indicating a presence of the red palm weevil and/or its larvae inside the tree.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: September 12, 2023
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Boon Siew Ooi, Yuan Mao, Islam Ashry
  • Patent number: 11698288
    Abstract: The subject matter of this specification can be embodied in, among other things, a method for remotely sensing vibration includes transmitting a collection of optical pulses through an optical fiber at a predetermined frequency, detecting a collection of backscattered Rayleigh traces from the optical fiber based on a vibration of the optical fiber at a vibration frequency at a location along the optical fiber, determining a normalized differential trace based on the collection of Rayleigh traces, determining, based on the normalized differential trace, the location in the optical fiber of the vibration, and determining, based on the raw Rayleigh traces, the vibration frequency.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: July 11, 2023
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Mohd Sharizal Bin Alias, Boon Siew Ooi, Muhammad Arsalan
  • Publication number: 20230160743
    Abstract: A fiber optic distributed acoustic sensing (DAS) system for detecting a red palm weevil (RPW) includes an optical fiber configured to be wrapped around a tree and a DAS box connected to the optical fiber. The DAS box includes a processing unit that is configured to receive a filtered Rayleigh signal reflected by the optical fiber, and run the filtered Rayleigh signal through a neural network system to determine a presence of the RPW in the tree.
    Type: Application
    Filed: March 9, 2021
    Publication date: May 25, 2023
    Inventors: Islam ASHRY, Boon Siew OOI, Yuan MAO
  • Publication number: 20230121430
    Abstract: A hybrid sensing-communication system includes a multicore optical fiber that includes first and second cores, a first communication device optically coupled to a first end of the first core of the multicore optical fiber, a second communication device optically coupled to a second end of the first core of the multicore optical fiber, a first sensing device optically coupled to a first end of the second core of the multicore optical fiber, and a second sensing device optically coupled to a second end of the second core of the multicore optical fiber. The first and second communication devices exclusively exchange communication data along the first core, the first and second sensing devices exclusively exchange sensing data along the second core, and the communication data is different from the sensing data.
    Type: Application
    Filed: March 8, 2021
    Publication date: April 20, 2023
    Inventors: Boon Siew OOI, Islam ASHRY, Yuan MAO
  • Patent number: 11624681
    Abstract: Systems and methods include a method for overcoming optical time domain reflectometry (OTDR) dead zone limitations by using a few-mode fiber (FMF). Optical pulses are transmitted by a transmitter of an OTDR system through a mode MUX/DEMUX into an FMF. Light signals directed by the FMF in a backward direction through the mode MUX/DEMUX are received by the OTDR system through N single-mode fiber (SMF) ports corresponding to N modes in the FMF. Light signals from N?1 dead-zone-free SMF ports are collected by the OTDR system. Losses are measured and faults are located in the FMF based at least on the light signals.
    Type: Grant
    Filed: January 16, 2020
    Date of Patent: April 11, 2023
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Boon Siew Ooi
  • Publication number: 20220299481
    Abstract: A method for determining tree infestation includes placing an optical fiber around a trunk of a tree; recording with a distributed acoustic sensor (DAS) box a Rayleigh signal reflected from the tree, along the optical fiber; processing the Rayleigh signal to obtain a processed signal; calculating a signal-to-noise ratio (SNR) of the processed signal for the tree; and comparing the SNR to a threshold value and counting an alarm if the SNR is larger than the threshold value. The SNR is defined as a ratio between (1) a maximum value of a processed signal and (2) a minimum value of the processed signal.
    Type: Application
    Filed: April 20, 2020
    Publication date: September 22, 2022
    Inventors: Boon Siew OOI, Islam ASHRY, Yuan MAO
  • Publication number: 20220283022
    Abstract: An integrated system for detecting a red palm weevil (RPW), farm fire, and soil moisture includes an optical fiber configured to be extending to a tree, and a distributed acoustic sensor (DAS) box connected to the optical fiber. The DAS box is configured to process first to third different optical signals reflected from the optical fiber, to determine a presence of the RPW from the first optical signal, a temperature at a location along the optical fiber from the second optical signals, and a moisture at a location around the tree from the third optical signal.
    Type: Application
    Filed: August 21, 2020
    Publication date: September 8, 2022
    Inventors: Boon Siew OOI, Yuan MAO, Islam ASHRY
  • Patent number: 11209307
    Abstract: The subject matter of this specification can be embodied in, among other things, a method that includes separating, from a few mode optical fiber, a collection of backscattered Rayleigh signals based on a vibration of the few mode optical fiber at a vibration frequency at a first location along the few mode optical fiber, separating, from the few mode optical fiber, a collection of backscattered Stokes Raman signals and Anti-Stokes Raman signals based on a temperature of the few mode optical fiber at a second location along the few mode optical fiber, detecting the separated Rayleigh signals and Raman signals, determining, based on detecting the collection of backscattered Rayleigh traces, at least one of the first location, the vibration frequency, and an amplitude of the vibration, and determining, based on the detecting the collection of backscattered Raman signals, the temperature at the second location.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: December 28, 2021
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Mohd Sharizal Bin Alias, Boon Siew Ooi, Muhammad Arsalan
  • Publication number: 20210223139
    Abstract: Systems and methods include a method for overcoming optical time domain reflectometry (OTDR) dead zone limitations by using a few-mode fiber (FMF). Optical pulses are transmitted by a transmitter of an OTDR system through a mode MUX/DEMUX into an FMF. Light signals directed by the FMF in a backward direction through the mode MUX/DEMUX are received by the OTDR system through N single-mode fiber (SMF) ports corresponding to N modes in the FMF. Light signals from N?1 dead-zone-free SMF ports are collected by the OTDR system. Losses are measured and faults are located in the FMF based at least on the light signals.
    Type: Application
    Filed: January 16, 2020
    Publication date: July 22, 2021
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Boon Siew Ooi
  • Publication number: 20210096106
    Abstract: An optical fiber distributed acoustic sensor (DAS) system for detecting a red palm weevil and/or its larvae inside a tree. The system includes an optical fiber that is configured to be placed next to a tree; and a DAS box optically connected to the optical fiber and configured to receive a reflected light from the optical fiber. The DAS box includes electronics that extracts from the reflected light a frequency in a range of [400 Hz, 4 kHz], and sends a message indicating a presence of the red palm weevil and/or its larvae inside the tree.
    Type: Application
    Filed: April 24, 2019
    Publication date: April 1, 2021
    Inventors: Boon Siew OOI, Yuan MAO, Islam ASHRY
  • Patent number: 10962408
    Abstract: Systems and methods include a number of optical pulses are transmitted by transmitting, by a distributed acoustic sensor (DAS), where the optical pulses are transmitted at an input port associated with a multimode fibers (MMF) used by the DAS, and where the fundamental mode of the MMF is excited. A number of backscattered Rayleigh signals are collected by the DAS. The Rayleigh signals are recorded as an output intensity profile. A position along the MMF that is subject to vibrations and corresponding vibration parameters are determined by analyzing the recorded output intensity profile.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 30, 2021
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Mohd Sharizal Bin Alias, Boon Siew Ooi, Muhammad Arsalan
  • Patent number: 10880007
    Abstract: Methods, systems, and apparatuses for simultaneous distributed temperature and vibration sensing using a multimode optical fiber (MMF) is disclosed. The distributed temperature and vibration sensing may include a single mode optical fiber (SMF) coupled to an MMF via a connection in which a central axis of the SMF is aligned with a central axis of the MMF. The connections provides of excitation of the fundamental mode within the MMF by light passing from the SMF into the MMF through the connection.
    Type: Grant
    Filed: August 15, 2019
    Date of Patent: December 29, 2020
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Boon Siew Ooi, Muhammad Arsalan
  • Publication number: 20200292727
    Abstract: The subject matter of this specification can be embodied in, among other things, a method for removing intermodal distortion that includes receiving a collection of distorted backscattered Rayleigh signals from a collection of modes of an optical fiber, where the collection of distorted backscattered Rayleigh signals are distorted by an intermodal coupling among the collection of modes, receiving a collection of distortion parameters that are descriptive of distortion effects of the intermodal coupling, and determining an undistorted backscattered Rayleigh signal based on the collection of distorted backscattered Rayleigh signals and the collection of distortion parameters.
    Type: Application
    Filed: March 12, 2019
    Publication date: September 17, 2020
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Mohd Sharizal Bin Alias, Boon Siew Ooi, Muhammad Arsalan
  • Publication number: 20200284647
    Abstract: Systems and methods include a number of optical pulses are transmitted by transmitting, by a distributed acoustic sensor (DAS), where the optical pulses are transmitted at an input port associated with a multimode fibers (MMF) used by the DAS, and where the fundamental mode of the MMF is excited. A number of backscattered Rayleigh signals are collected by the DAS. The Rayleigh signals are recorded as an output intensity profile. A position along the MMF that is subject to vibrations and corresponding vibration parameters are determined by analyzing the recorded output intensity profile.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Mohd Sharizal Bin Alias, Boon Siew Ooi, Muhammad Arsalan
  • Publication number: 20200240834
    Abstract: The subject matter of this specification can be embodied in, among other things, a method that includes separating, from a few mode optical fiber, a collection of backscattered Rayleigh signals based on a vibration of the few mode optical fiber at a vibration frequency at a first location along the few mode optical fiber, separating, from the few mode optical fiber, a collection of backscattered Stokes Raman signals and Anti-Stokes Raman signals based on a temperature of the few mode optical fiber at a second location along the few mode optical fiber, detecting the separated Rayleigh signals and Raman signals, determining, based on detecting the collection of backscattered Rayleigh traces, at least one of the first location, the vibration frequency, and an amplitude of the vibration, and determining, based on the detecting the collection of backscattered Raman signals, the temperature at the second location.
    Type: Application
    Filed: March 27, 2020
    Publication date: July 30, 2020
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Mohd Sharizal Bin Alias, Boon Siew Ooi, Muhammad Arsalan
  • Publication number: 20200149952
    Abstract: The subject matter of this specification can be embodied in, among other things, a method for remotely sensing vibration includes transmitting a collection of optical pulses through an optical fiber at a predetermined frequency, detecting a collection of backscattered Rayleigh traces from the optical fiber based on a vibration of the optical fiber at a vibration frequency at a location along the optical fiber, determining a normalized differential trace based on the collection of Rayleigh traces, determining, based on the normalized differential trace, the location in the optical fiber of the vibration, and determining, based on the raw Rayleigh traces, the vibration frequency.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 14, 2020
    Applicants: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Mohd Sharizal Bin Alias, Boon Siew Ooi, Muhammad Arsalan
  • Patent number: 10634553
    Abstract: The subject matter of this specification can be embodied in, among other things, a method that includes separating, from a few mode optical fiber, a collection of backscattered Rayleigh signals based on a vibration of the few mode optical fiber at a vibration frequency at a first location along the few mode optical fiber, separating, from the few mode optical fiber, a collection of backscattered Stokes Raman signals and Anti-Stokes Raman signals based on a temperature of the few mode optical fiber at a second location along the few mode optical fiber, detecting the separated Rayleigh signals and Raman signals, determining, based on detecting the collection of backscattered Rayleigh traces, at least one of the first location, the vibration frequency, and an amplitude of the vibration, and determining, based on the detecting the collection of backscattered Raman signals, the temperature at the second location.
    Type: Grant
    Filed: January 30, 2019
    Date of Patent: April 28, 2020
    Assignees: Saudi Arabian Oil Company, King Abdullah University of Science and Technology
    Inventors: Frode Hveding, Islam Ashry, Mao Yuan, Mohd Sharizal Bin Alias, Boon Siew Ooi, Muhammad Arsalan