Patents by Inventor Ismail INLEK

Ismail INLEK has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230037882
    Abstract: Technologies for an optomechanical system include an intermediate plate having a top surface with multiple tapped holes arranged in a grid. A pair of dowel pin holes surround each tapped hole in a linear pattern. Multiple optical blocks are coupled to the intermediate plate using dowel pins positioned in the dowel pin holes and corresponding dowel pin holes defined in the bottom surface of the optical block. Each optical block includes multiple optical elements coupled to the top surface of the optical block with dowel pins. A cryostat may be coupled to the intermediate plate. A cryo-package assembly is mounted inside a cryo chamber of the cryostat. The cryo-package assembly includes a cryo device such as an ion trap covered by a machined copper lid. The lid includes a meandering passageway to allow for differential pumping in order to achieve ultra-high vacuum within the cryo-package assembly.
    Type: Application
    Filed: August 8, 2022
    Publication date: February 9, 2023
    Inventors: Robert Spivey, Kai Hedek, Ismail Inlek, Jungsang Kim, Zhubing Jia
  • Patent number: 11538674
    Abstract: Systems and methods for loading microfabricated ion traps are disclosed. Photo-ablation via an ablation pulse is used to generate a flow of atoms from a source material, where the flow is predominantly populated with neutral atoms. As the neutral atoms flow toward the ion trap, two-photon photo-ionization is used to selectively ionize a specific isotope contained in the atom flow. The velocity of the liberated atoms, atom-generation rate, and/or heat load of the source material is controlled by controlling the fluence of the ablation pulse to provide high ion-trapping probability while simultaneously mitigating generation of heat in the ion-trapping system that can preclude cryogenic operation. In some embodiments, the source material is held within an ablation oven comprising an electrically conductive housing that is configured to restrict the flow of agglomerated neutral atoms generated during photo-ablation toward the ion trap.
    Type: Grant
    Filed: November 17, 2020
    Date of Patent: December 27, 2022
    Assignee: Duke University
    Inventors: Geert Vrijsen, Jungsang Kim, Robert Spivey, Ismail Inlek, Yuhi Aikyo
  • Publication number: 20210335591
    Abstract: Aspects of the present disclosure describe systems, methods, and structures that enable a compact, UHV ion trap system that can operate at temperatures above cryogenic temperatures. Ion trap systems in accordance with the present disclosure are surface treated and sealed while held in a UHV environment, where disparate components are joined via UHV seals, such as weld joints, compressible metal flanges, and UHV-compatible solder joints. As a result, no cryogenic pump is required, thereby enabling an extremely small-volume system.
    Type: Application
    Filed: July 9, 2021
    Publication date: October 28, 2021
    Inventors: Jungsang KIM, Geert VRIJSEN, Ismail INLEK, Tom NOEL, Megan IVORY, Alexander KATO, Steve HUGHES
  • Publication number: 20210217598
    Abstract: Systems and methods for loading microfabricated ion traps are disclosed. Photo-ablation via an ablation pulse is used to generate a flow of atoms from a source material, where the flow is predominantly populated with neutral atoms. As the neutral atoms flow toward the ion trap, two-photon photo-ionization is used to selectively ionize a specific isotope contained in the atom flow. The velocity of the liberated atoms, atom-generation rate, and/or heat load of the source material is controlled by controlling the fluence of the ablation pulse to provide high ion-trapping probability while simultaneously mitigating generation of heat in the ion-trapping system that can preclude cryogenic operation. In some embodiments, the source material is held within an ablation oven comprising an electrically conductive housing that is configured to restrict the flow of agglomerated neutral atoms generated during photo-ablation toward the ion trap.
    Type: Application
    Filed: November 17, 2020
    Publication date: July 15, 2021
    Inventors: Geert VRIJSEN, Jungsang KIM, Robert SPIVEY, Ismail INLEK, Yuhi AIKYO
  • Patent number: 10923335
    Abstract: Systems and methods for loading microfabricated ion traps are disclosed. Photo-ablation via an ablation pulse is used to generate a flow of atoms from a source material, where the flow is predominantly populated with neutral atoms. As the neutral atoms flow toward the ion trap, two-photon photo-ionization is used to selectively ionize a specific isotope contained in the atom flow. The velocity of the liberated atoms, atom-generation rate, and/or heat load of the source material is controlled by controlling the fluence of the ablation pulse to provide high ion-trapping probability while simultaneously mitigating generation of heat in the ion-trapping system that can preclude cryogenic operation. In some embodiments, the source material is held within an ablation oven comprising an electrically conductive housing that is configured to restrict the flow of agglomerated neutral atoms generated during photo-ablation toward the ion trap.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: February 16, 2021
    Assignee: Duke University
    Inventors: Geert Vrijsen, Jungsang Kim, Robert Spivey, Ismail Inlek, Yuhi Aikyo
  • Publication number: 20190287782
    Abstract: Systems and methods for loading microfabricated ion traps are disclosed. Photo-ablation via an ablation pulse is used to generate a flow of atoms from a source material, where the flow is predominantly populated with neutral atoms. As the neutral atoms flow toward the ion trap, two-photon photo-ionization is used to selectively ionize a specific isotope contained in the atom flow. The velocity of the liberated atoms, atom-generation rate, and/or heat load of the source material is controlled by controlling the fluence of the ablation pulse to provide high ion-trapping probability while simultaneously mitigating generation of heat in the ion-trapping system that can preclude cryogenic operation. In some embodiments, the source material is held within an ablation oven comprising an electrically conductive housing that is configured to restrict the flow of agglomerated neutral atoms generated during photo-ablation toward the ion trap.
    Type: Application
    Filed: March 19, 2019
    Publication date: September 19, 2019
    Inventors: Geert VRIJSEN, Jungsang KIM, Robert SPIVEY, Ismail INLEK, Yuhi AIKYO