Patents by Inventor Israel Greiss

Israel Greiss has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11038726
    Abstract: Encoding PAM4 or PAM8 symbols to have a power spectral density (PSD) similar to the PSD of a standard 8b10b Non-Return-to-Zero stream. In one embodiment, a transmitter includes first and second 8b10b encoders that receive first and second streams split from an original byte stream. The first and second 8b10b encoders output first and second 8b10b streams, respectively. The first and second 8b10b streams are fed into a 2-bit combiner that performs a linear combination of the first and second 8b10b streams. And a 4-level Pulse Amplitude Modulation encoder (PAM4 encoder) converts the linear combination of each two bits, received from the combiner, into a PAM4 symbol. Wherein the resulting stream of PAM4 symbols has PSD similar to the PSD of the standard 8b10b non-return-to-zero stream.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: June 15, 2021
    Assignee: Valens Semiconductor Ltd.
    Inventors: Israel Greiss, Eyran Lida
  • Publication number: 20210014091
    Abstract: Encoding PAM4 or PAM8 symbols to have a power spectral density (PSD) similar to the PSD of a standard 8b10b Non-Return-to-Zero stream. In one embodiment, a transmitter includes first and second 8b10b encoders that receive first and second streams split from an original byte stream. The first and second 8b10b encoders output first and second 8b10b streams, respectively. The first and second 8b10b streams are fed into a 2-bit combiner that performs a linear combination of the first and second 8b10b streams. And a 4-level Pulse Amplitude Modulation encoder (PAM4 encoder) converts the linear combination of each two bits, received from the combiner, into a PAM4 symbol. Wherein the resulting stream of PAM4 symbols has PSD similar to the PSD of the standard 8b10b non-return-to-zero stream.
    Type: Application
    Filed: July 14, 2020
    Publication date: January 14, 2021
    Applicant: Valens Semiconductor Ltd.
    Inventors: Israel Greiss, Eyran Lida
  • Patent number: 10523339
    Abstract: Methods and systems for rapidly recovering from a serious interference. One method includes the following steps: transmitting, by a transmitter to a transceiver over a communication channel, ongoing data at a fixed data rate above 100. Mbps; receiving, by a receiver from the transceiver, an indication indicating that the transceiver is experiencing a serious interference; responsive to the indication, reducing data rate at which the transmitter transmits; storing excess data that cannot be sent during the period of the reduced data rate; and increasing the data rate, at which the transmitter transmits, to a level that enables it to transmit, within less than 1 millisecond from the moment of reducing the data rate, both the stored excess data and the ongoing data at the fixed data rate.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: December 31, 2019
    Assignee: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Patent number: 10277336
    Abstract: Systems and methods for fast recovery from serious interferences using limited retransmissions. In one embodiment, a system includes a transceiver coupled to a second transceiver over a communication channel. The transceiver maintains a pre-retransmission packet loss rate below 1% when there is no serious interference. A limited resources retransmission module (LRRM) stores, for a delayed transmission, a maximum amount of erred packets that are accumulated during less than 1 ms at data rate above 500 Mbps. And within less than 1 ms from receiving an indication that the serious interference has occurred, a fast-adaptive canceller mitigates the effect of the serious interference, bringing the effect to a level that enables the communication system to successfully transmit data at a rate of above 500 Mbps.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: April 30, 2019
    Assignee: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Patent number: 10270542
    Abstract: Methods and systems for fast convergence. One embodiment includes the following steps: extracting a digital representation of a common mode signal of a received differential signal sent by a transceiver, and generating, by a fast-adaptive mode-conversion canceller (FA-MCC), a compensation signal to mitigate differential interference; feeding the received differential signal to at least one of the following: a digital equalizer, and a digital canceller (DEDC); wherein the FA-MCC and the DEDC feed a slicer; responsive to receiving an indication that a serious differential interference has occurred, indicating the transceiver to transmit known data; and utilizing the received known data for improving the accuracy of the slicer's errors, which enables rapid adaptation of the FA-MCC to a level that mitigates the serious differential interference and enables requesting retransmission of erred packets fast enough to maintain a fixed rate of data transmission over a 2-millisecond window.
    Type: Grant
    Filed: September 26, 2018
    Date of Patent: April 23, 2019
    Assignee: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Patent number: 10256920
    Abstract: Systems and methods for recovering rapidly from a mode-conversion of a common mode interference. One exemplary transceiver includes: a slicer configured to generate slicing decisions and slicing errors based on a differential signal, transmitted at a rate above 500 Mbps, which is received from a second transceiver; and a common mode sensor analog front end (CMS-AFE) configured to sense a common mode component of the differential signal. The CMS-AFE is coupled to a fast-adaptive mode-conversion canceller (FA-MCC) configured to generate a compensation signal that compensates for differential interferences that are correlated with the common mode component. Wherein, within less than 1 millisecond from an occurrence of a differential interference that causes the packet loss to exceed 10% as a result of the mode-conversion, the transceiver is configured to utilize the slicing errors to adapt the FA-MCC to a level that reduces the packet loss rate to below 1%.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: April 9, 2019
    Assignee: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Patent number: 10225113
    Abstract: Transceivers and methods able to recover within less than 1 millisecond from quality degradation in the transceiver's operating point, including: receiving a signal from a second transceiver, using an adaptive digital equalizer and canceller (ADEC) to generate a slicer input signal, and generating slicing decisions and slicing errors that are used to adapt the ADEC. Shortly after identifying quality degradation in the transceiver's operating point, indicating the second transceiver to transmitting known data. And within less than 1 millisecond from identifying the quality degradation, the transceiver utilizes the known data to improve the accuracy of the slicing errors, which enables fast adaptation of the ADEC that improves the quality in the transceiver's operating point to a level that enables the transceiver to indicate the second transceiver to transmit data.
    Type: Grant
    Filed: January 25, 2016
    Date of Patent: March 5, 2019
    Assignee: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Gaby Gur Cohen, Aviv Salamon, Israel Greiss
  • Publication number: 20190028211
    Abstract: Methods and systems for rapidly recovering from a serious interference. One method includes the following steps: transmitting, by a transmitter to a transceiver over a communication channel, ongoing data at a fixed data rate above 100 Mbps; receiving, by a receiver from the transceiver, an indication indicating that the transceiver is experiencing a serious interference; responsive to the indication, reducing data rate at which the transmitter transmits; storing excess data that cannot be sent during the period of the reduced data rate; and increasing the data rate, at which the transmitter transmits, to a level that enables it to transmit, within less than 1 millisecond from the moment of reducing the data rate, both the stored excess data and the ongoing data at the fixed data rate.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Applicant: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Publication number: 20190028212
    Abstract: Systems and methods for fast recovery from serious interferences using limited retransmissions. In one embodiment, a system includes a transceiver coupled to a second transceiver over a communication channel. The transceiver maintains a pre-retransmission packet loss rate below 1% when there is no serious interference. A limited resources retransmission module (LRRM) stores, for a delayed transmission, a maximum amount of erred packets that are accumulated during less than 1 ms at data rate above 500 Mbps. And within less than 1 ms from receiving an indication that the serious interference has occurred, a fast-adaptive canceller mitigates the effect of the serious interference, bringing the effect to a level that enables the communication system to successfully transmit data at a rate of above 500 Mbps.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Applicant: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Publication number: 20190028210
    Abstract: Methods and systems for fast convergence. One embodiment includes the following steps: extracting a digital representation of a common mode signal of a received differential signal sent by a transceiver, and generating, by a fast-adaptive mode-conversion canceller (FA-MCC), a compensation signal to mitigate differential interference; feeding the received differential signal to at least one of the following: a digital equalizer, and a digital canceller (DEDC); wherein the FA-MCC and the DEDC feed a slicer; responsive to receiving an indication that a serious differential interference has occurred, indicating the transceiver to transmit known data; and utilizing the received known data for improving the accuracy of the slicer's errors, which enables rapid adaptation of the FA-MCC to a level that mitigates the serious differential interference and enables requesting retransmission of erred packets fast enough to maintain a fixed rate of data transmission over a 2-millisecond window.
    Type: Application
    Filed: September 26, 2018
    Publication date: January 24, 2019
    Applicant: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Patent number: 10171182
    Abstract: Methods and systems for fast recovery, such as a transceiver that assists a second transceiver to recover rapidly from quality degradation. In one embodiment, the transceiver includes a receiver and a transmitter. The receiver receives from the second transceiver an indication to transmit known data, wherein utilizing the known data enables the second transceiver to recover within less than 1 millisecond from the quality degradation. And the transmitter transmits the known data, wherein the known data comprises bitwise complement code words of an idle sequence, and each bitwise complement code word appears in the idle sequence.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: January 1, 2019
    Assignee: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Patent number: 10116471
    Abstract: A transceiver and a corresponding method configured to recover within less than 1 ms from quality degradation in its operating point. The transceiver includes: a receiver analog front end (Rx AFE), an adaptive module comprising at least one of an adaptive digital equalizer and an adaptive digital canceller (ADEC), a common mode sensor AFE (CMS-AFE), a fast-adaptive mode-conversion canceller (FA-MCC), and a slicer. The Rx AFE receives signals from a second transceiver. Shortly after identifying quality degradation in the transceiver's operating point, the transceiver indicates the second transceiver to reduce the rate of the transmitted data. And within less than 1 ms, the transceiver utilizes the improved detection rate to improve the accuracy of the slicing errors, which enables fast adaptation of the ADEC, that improves the quality in the transceiver's operating point to a level that enables the transceiver to indicate the second transceiver to increase the rate.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: October 30, 2018
    Assignee: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Gaby Gur Cohen, Aviv Salamon, Israel Greiss
  • Patent number: 9685991
    Abstract: Methods and systems for fast recovery from serious differential interferences. An exemplary method includes the following steps: transmitting, by a transmitter to a transceiver, at a fixed data rate above 100 Mbps; receiving, by a receiver from the transceiver, an indication indicating that the transceiver is experiencing a serious interference; responsive to the indication, reducing the data rate at which the transmitter transmits; storing excess data that could not be sent during the period of the reduced data rate; and increasing, within less than 1 millisecond, the data rate at which the transmitter transmits to a level that enables it to transmit both the stored excess data and the ongoing data at the fixed data rate.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: June 20, 2017
    Assignee: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Publication number: 20170099166
    Abstract: A transceiver and a corresponding method configured to recover within less than 1 ms from quality degradation in its operating point. The transceiver includes: a receiver analog front end (Rx AFE), an adaptive module comprising at least one of an adaptive digital equalizer and an adaptive digital canceller (ADEC), a common mode sensor AFE (CMS-AFE), a fast-adaptive mode-conversion canceller (FA-MCC), and a slicer. The Rx AFE receives signals from a second transceiver. Shortly after identifying quality degradation in the transceiver's operating point, the transceiver indicates the second transceiver to reduce the rate of the transmitted data. And within less than 1 ms, the transceiver utilizes the improved detection rate to improve the accuracy of the slicing errors, which enables fast adaptation of the ADEC, that improves the quality in the transceiver's operating point to a level that enables the transceiver to indicate the second transceiver to increase the rate.
    Type: Application
    Filed: December 7, 2016
    Publication date: April 6, 2017
    Applicant: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Gaby Gur Cohen, Aviv Salamon, Israel Greiss
  • Publication number: 20160277127
    Abstract: Systems and methods for recovering rapidly from a mode-conversion of a common mode interference. One exemplary transceiver includes: a slicer configured to generate slicing decisions and slicing errors based on a differential signal, transmitted at a rate above 500 Mbps, which is received from a second transceiver; and a common mode sensor analog front end (CMS-AFE) configured to sense a common mode component of the differential signal. The CMS-AFE is coupled to a fast-adaptive mode-conversion canceller (FA-MCC) configured to generate a compensation signal that compensates for differential interferences that are correlated with the common mode component. Wherein, within less than 1 millisecond from an occurrence of a differential interference that causes the packet loss to exceed 10% as a result of the mode-conversion, the transceiver is configured to utilize the slicing errors to adapt the FA-MCC to a level that reduces the packet loss rate to below 1%.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 22, 2016
    Applicant: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Publication number: 20160277126
    Abstract: Methods and systems for fast recovery, such as a transceiver that assists a second transceiver to recover rapidly from quality degradation. In one embodiment, the transceiver includes a receiver and a transmitter. The receiver receives from the second transceiver an indication to transmit known data, wherein utilizing the known data enables the second transceiver to recover within less than 1 millisecond from the quality degradation. And the transmitter transmits the known data, wherein the known data comprises bitwise complement code words of an idle sequence, and each bitwise complement code word appears in the idle sequence.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 22, 2016
    Applicant: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Publication number: 20160277067
    Abstract: Methods and systems for fast recovery from serious differential interferences. An exemplary method includes the following steps: transmitting, by a transmitter to a transceiver, at a fixed data rate above 100 Mbps; receiving, by a receiver from the transceiver, an indication indicating that the transceiver is experiencing a serious interference; responsive to the indication, reducing the data rate at which the transmitter transmits; storing excess data that could not be sent during the period of the reduced data rate; and increasing, within less than 1 millisecond, the data rate at which the transmitter transmits to a level that enables it to transmit both the stored excess data and the ongoing data at the fixed data rate.
    Type: Application
    Filed: June 1, 2016
    Publication date: September 22, 2016
    Applicant: Valens Semiconductor Ltd.
    Inventors: Eyran Lida, Aviv Salamon, Gaby Gur Cohen, Israel Greiss
  • Publication number: 20160218892
    Abstract: Transceivers and methods able to recover within less than 1 millisecond from quality degradation in the transceiver's operating point, including: receiving a signal from a second transceiver, using an adaptive digital equalizer and canceller (ADEC) to generate a slicer input signal, and generating slicing decisions and slicing errors that are used to adapt the ADEC. Shortly after identifying quality degradation in the transceiver's operating point, indicating the second transceiver to transmitting known data. And within less than 1 millisecond from identifying the quality degradation, the transceiver utilizes the known data to improve the accuracy of the slicing errors, which enables fast adaptation of the ADEC that improves the quality in the transceiver's operating point to a level that enables the transceiver to indicate the second transceiver to transmit data.
    Type: Application
    Filed: January 25, 2016
    Publication date: July 28, 2016
    Applicant: Valens Semiconductor ltd.
    Inventors: Eyran Lida, Gaby Gur Cohen, Aviv Salamon, Israel Greiss
  • Patent number: 9110263
    Abstract: A multi-core plastic optical fiber is used for multi-channel communication purposes. An alignment tool comprising a light source, selective filter and a detachable alignment-tube having a guide notch is provided to map the individual cores of a multi-core plastic optical fiber and prepare the connection of optical transceivers to both exposed ends of a pre-cut length of fiber. The alignment method results in a pre-cut length of fiber having alignment-tubes with guide notches secured to both ends. Transceiver guide projections mate to the notches, creating a complete optical multi-path between the transceiver active elements through the fiber cores. An automatic method of assembling optical transmitters to a multi-core fiber and mating optical receivers uses no alignment tools and tubes. This method dictates a specific placement of the optical transmitters in relation to the cores and receivers, assigning each transmitter to a preferred receiver based on detected light signal criteria.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: August 18, 2015
    Assignee: ACRYLICOM LTD.
    Inventors: Israel Greiss, Nir Yona, Gerardo Nahum, Omri Raisman
  • Publication number: 20130058661
    Abstract: A multi-core plastic optical fiber is used for multi-channel communication purposes. An alignment tool comprising a light source, selective filter and a detachable alignment-tube having a guide notch is provided to map the individual cores of a multi-core plastic optical fiber and prepare the connection of optical transceivers to both exposed ends of a pre-cut length of fiber. The alignment method results in a pre-cut length of fiber having alignment-tubes with guide notches secured to both ends. Transceiver guide projections mate to the notches, creating a complete optical multi-path between the transceiver active elements through the fiber cores. An automatic method of assembling optical transmitters to a multi-core fiber and mating optical receivers uses no alignment tools and tubes. This method dictates a specific placement of the optical transmitters in relation to the cores and receivers, assigning each transmitter to a preferred receiver based on detected light signal criteria.
    Type: Application
    Filed: November 16, 2010
    Publication date: March 7, 2013
    Inventors: Israel Greiss, Nir Yona, Gerardo Nahum, Omri Raisman