Patents by Inventor Itay Tirosh

Itay Tirosh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963966
    Abstract: Described herein are compositions and methods of using single-cell RNA-sequencing to identify treatment resistance in patients with ovarian cancer. Also, described herein are compositions and methods for treatment targeting resistance in patients with ovarian cancer.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: April 23, 2024
    Assignees: Dana-Farber Cancer Institute, Inc., The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Levi Garraway, Benjamin Izar, Aviv Regev, Orit Rozenblatt-Rosen, Asaf Rotem, Elizabeth Stover, Itay Tirosh
  • Publication number: 20230000912
    Abstract: This invention relates generally to compositions and methods for identifying genes and gene networks that respond to, modulate, control or otherwise influence tumors and tissues, including cells and cell types of the tumors and tissues, and malignant, microenvironmental, or immunologic states of the tumor cells and tissues. The invention also relates to methods of diagnosing, prognosing and/or staging of tumors, tissues and cells, and provides compositions and methods of modulating expression of genes and gene networks of tumors, tissues and cells, as well as methods of identifying, designing and selecting appropriate treatment regimens.
    Type: Application
    Filed: January 25, 2017
    Publication date: January 5, 2023
    Inventors: Bradley Bernstein, Itay Tirosh, Mario Suva, Aviv Regev, Orit Rozenblatt-Rosen, Andrew Venteicher
  • Publication number: 20210363260
    Abstract: Provided are methods and compositions for treating cancer in a subject in need thereof. One of the top gene products in glioblastoma multiforme (GBM) is KLRB1 (also known as CD161), a C-type lectin protein that binds to CLEC2D. Binding of CLEC2D to the KLRB1 receptor inhibits the cytotoxic function of NK cells as well as cytokine secretion. KLRB1 is only expressed by small subpopulations of human blood T cells, and consequently little is known about the function of this receptor in T cells. However, preliminary data demonstrate that KLRB1 expression is induced in T cells within the GBM microenvironment. In an exemplary embodiment, a method is provided comprising administering an agent capable of blocking the interaction of KLRB1 with its ligand. The agent may comprise an antibody or fragment thereof, which may bind KLRB1 or CLEC2D.
    Type: Application
    Filed: November 13, 2018
    Publication date: November 25, 2021
    Inventors: Mario Suva, Kai Wucherpfennig, Aviv Regev, Itay Tirosh, Nathan Mathewson
  • Publication number: 20200390786
    Abstract: Described herein are compositions and methods of using single-cell RNA-sequencing to identify treatment resistance in patients with ovarian cancer. Also, described herein are compositions and methods for treatment targeting resistance in patients with ovarian cancer.
    Type: Application
    Filed: March 30, 2018
    Publication date: December 17, 2020
    Inventors: Levi Garraway, Benjamin Izar, Aviv Regev, Orit Rozenblatt-Rosen, Asaf Rotem, Elizabeth Stover, Itay Tirosh
  • Publication number: 20200384022
    Abstract: The subject matter disclosed herein is generally directed to compositions and methods for treating diffuse gliomas with histone H3 lysine27-to-methionine mutations (H3K27M-gliomas). Disclosed herein are gene signatures specific for tumor cell types and compositions for treatment of H3K27M gliomas. In one embodiment, PRC1 is targeted in a treatment regimen for H3K27M-gliomas.
    Type: Application
    Filed: November 13, 2018
    Publication date: December 10, 2020
    Inventors: Mario Suva, Bradley Bernstein, Aviv Regev, Mariella Filbin, Itay Tirosh, Volker Hovestadt
  • Publication number: 20200071773
    Abstract: The present invention advantageously provides for novel gene signatures, tools and methods for the treatment and prognosis of epithelial tumors. Applicants have used single cell RNA-seq to reveal novel expression programs of malignant, stromal and immune cells in the HNSCC tumor ecosystem. Malignant cells varied in expression of programs related to stress, hypoxia and epithelial differentiation. A partial EMT-like program (p-EMT) was discovered that was expressed in cells residing at the leading edge of tumors. Applicants unexpectedly linked the p-EMT state to metastasis and adverse clinical features that may be used to direct treatment of epithelial cancers (e.g., HNSCC). Applicants also show that metastases are dynamically regulated by the tumor microenvironment (TME). Finally, a computational modeling approach was developed that allows analysis of malignant cells in bulk sequencing samples.
    Type: Application
    Filed: April 12, 2018
    Publication date: March 5, 2020
    Inventors: Sidharth Puram, Itay Tirosh, Anuraag Parikh, Derrick Lin, Aviv Regev, Bradley Bernstein
  • Publication number: 20190367964
    Abstract: Described herein are compositions and methods of disaggregating a tissue sample into single cells.
    Type: Application
    Filed: February 2, 2017
    Publication date: December 5, 2019
    Applicants: DANA-FARBER CANCER INSTITUTE, INC., THE BROAD INSTITUTE, INC., MASSACHUSETTS INSTITUTE OF TECHNOLOGY, PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Benjamin Izar, Levi Garraway, Asaf Rotem, Aviv Regev, Alexander Shalek, Marc Wadsworth, Sanjay Prakadan, Orit Rozenblatt-Rosen, Itay Tirosh
  • Publication number: 20180100201
    Abstract: This invention relates generally to compositions and methods for identifying genes and gene networks that respond to, modulate, control or otherwise influence tumors and tissues, including cells and cell types of the tumors and tissues, and malignant, microenvironmental, or immunologic states of the tumor cells and tissues. The invention also relates to methods of diagnosing, prognosing and/or staging of tumors, tissues and cells, and provides compositions and methods of modulating expression of genes and gene networks of tumors, tissues and cells, as well as methods of identifying, designing and selecting appropriate treatment regimens. The invention also relates to the modulation of complement activity to shift cellular immunity and obtain an effective therapeutic response.
    Type: Application
    Filed: December 17, 2017
    Publication date: April 12, 2018
    Inventors: Levi A. Garraway, Benjamin Izar, Sanjay Prakadan, Aviv Regev, Orit Rozenblatt-Rosen, Alexander K. Shalek, Mario Suva, Itay Tirosh, Andrew Venteicher, Marc H. Wadsworth II, Bradley Bernstein, Anuraag Parikh, Sidharth Puram