Patents by Inventor Itsuki Kobata

Itsuki Kobata has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050155868
    Abstract: An electrolytic processing apparatus can increase the efficiency of the dissociation reaction of water and efficiently perform electrolytic processing, and can eliminate the need for an operation for a change of ion exchanger. The electrolytic processing apparatus includes: a processing electrode and a feeding electrode; a liquid supply section for supplying a liquid containing an ion-exchange material between the workpiece and at least one of the processing electrode and the feeding electrode; a power source for applying a voltage between the processing electrode and the feeding electrode; and a drive section for moving the workpiece and at least one of the processing electrode and the feeding electrode relative to each other; wherein electrolytic processing of the workpiece is carried out while keeping the workpiece not in contact with and close to the processing electrode at a distance of not more than 10 ?m.
    Type: Application
    Filed: January 14, 2005
    Publication date: July 21, 2005
    Inventors: Itsuki Kobata, Yutaka Wada, Hirokuni Hiyama, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Akira Kodera
  • Publication number: 20050121328
    Abstract: This invention relates to an electrolytic processing apparatus and method useful for processing a conductive material formed in the surface of a substrate, or for removing impurities adhering to the surface of a substrate. An electrolytic processing apparatus, including, a processing electrode that can come close to a workpiece, a feeding electrode for feeding electricity to the workpiece, an ion exchanger disposed in the space between the workpiece and the processing and the feeding electrodes, a fluid supply section for supplying a fluid between the workpiece and the ion exchanger, and a power source, wherein the processing electrode and/or the feeding electrode is electrically divided into a plurality of parts, and the power source applies a voltage to each of the divided electrode parts and can control voltage and/or electric current independently for each of the divided electrode parts.
    Type: Application
    Filed: January 31, 2003
    Publication date: June 9, 2005
    Inventors: Mitsuhiko Shirakashi, Masayuki Kumekawa, Hozumi Yasuda, Itsuki Kobata, Osamu Nabeya
  • Publication number: 20050115838
    Abstract: There is provided an electrolytic processing apparatus and method that can effect processing of a substrate with high processing precision and can produce an intended form of processed substrate with high accuracy of form. The electrolytic processing apparatus includes: a holder (30) for holding a substrate (W); a processing electrode (32) that can come close to the substrate; a feeding electrode (34) for feeding electricity to the substrate; an ion exchanger (40) disposed in the space between the substrate and the processing electrode, or the substrate and the feeding electrode; a fluid supply section (70) for supplying a fluid into the space; a power source (68) for applying a voltage between the processing electrode and the feeding electrode; a drive sections (44, 56 and 60) for allowing the substrate and the processing electrode, facing each other, to make a relative movement; and a numerical controller (72) for effecting a numerical control of the drive sections.
    Type: Application
    Filed: January 7, 2003
    Publication date: June 2, 2005
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Masayuki Kumekawa, Hozumi Yasuda, Itsuki Kobata, Yasushi Toma
  • Patent number: 6875335
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: April 5, 2005
    Assignees: Ebara Corporation
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata
  • Publication number: 20050067289
    Abstract: An electrolytic processing apparatus can detect the endpoint of electrolytic processing stably with high precision and with a relatively simple construction. The electrolytic processing apparatus including: a processing electrode which can come close to or into contact with a processing object; a feeding electrode for feeding electricity to the processing object; a fluid supply section for supplying fluid between the processing object and at least one of the processing electrode and the feeding electrode; a processing power source for applying a voltage between the processing electrode and the feeding electrode; a drive section for causing relative movement between the processing object and at least one of the processing electrode and the feeding electrode; and an eddy current sensor for detecting the thickness of the processing object from a change in eddy current loss, said sensor being disposed not in contact with or separately by an insulator from the processing electrode and/or the feeding electrode.
    Type: Application
    Filed: September 24, 2004
    Publication date: March 31, 2005
    Inventors: Ikutaro Noji, Hozumi Yasuda, Takeshi Iizumi, Kazuto Hirokawa, Itsuki Kobata
  • Publication number: 20050051432
    Abstract: There is provided an electrolytic processing apparatus and method that can effect processing of a workpiece with high processing precision and can produce an intended form of processed workpiece with high accuracy of form. The electrolytic processing apparatus includes: a processing electrode which can come close to a workpiece; a feeding electrode for feeding electricity to the workpiece; an ion exchanger disposed in at least one of the space between the workpiece and the processing electrode and the space between the workpiece and the feeding electrode; a fluid supply section for supplying a fluid to the space between the workpiece and at least one of the processing electrode and the feeding electrode; and a power source for supplying an electric power between the processing electrode and the feeding electrode while arbitrarily controlling at least one of a voltage and an electric current.
    Type: Application
    Filed: December 11, 2002
    Publication date: March 10, 2005
    Inventors: Mitsuhiko Shirakashi, Masayuki Kumekawa, Hozumi Yasuda, Itsuki Kobata
  • Publication number: 20050035001
    Abstract: There are provided an electrolytic processing apparatus and an electrolytic processing method which can regenerate an ion exchanger with an enhanced regeneration rate of ion-exchange capacity without adversely affecting the throughput of the apparatus. The electrolytic processing apparatus includes: a holder for holding a workpiece; an electrode section including an electrode, a contact member, and a discharge portion for discharging metal ions which have been taken from the workpiece into the contact member during processing, said electrode section coming close to or into contact with the workpiece held by the holder to effect processing of the workpiece in the presence of a liquid; and a regeneration dummy electrode which can come close to or into contact with the contact member.
    Type: Application
    Filed: August 10, 2004
    Publication date: February 17, 2005
    Inventors: Hozumi Yasuda, Ikutaro Noji, Kazuto Hirokawa, Takeshi Iizumi, Itsuki Kobata
  • Publication number: 20040256237
    Abstract: There is provided an electrolytic processing apparatus and method which, while omitting a CMP treatment entirely or reducing a load upon a CMP treatment to the least possible extent, can process a conductive material formed in the surface of a substrate to flatten the material, or can remove (clean) extraneous matter adhering to the surface of a workpiece such as a substrate. The electrolytic processing apparatus includes: a pair of electrodes disposed at a given distance; an ion exchange disposed between the pair of electrodes; and a liquid supply section for supplying a liquid between the pair of electrodes. The electrolytic processing method includes: providing an electrode section having, a pair of electrodes disposed at a given distance with an ion exchanger being interposed: and bringing the electrode into contact with or close to a workpiece while supplying a fluid to the ion exchanger, thereby processing the surface of the workpiece.
    Type: Application
    Filed: August 9, 2004
    Publication date: December 23, 2004
    Inventors: Itsuki Kobata, Mitsuhiko Shirakashi, Masayuki Kumekawa, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Kaoru Yamada, Yuji Makita, Hozumi Yasuda, Ikutaro Noji, Kunio Fujiwara, Osamu Nabeya
  • Publication number: 20040231989
    Abstract: There is a provided a substrate processing apparatus that can perform an electrolytic processing, which is different from a common, conventional etching, to remove (clean off) a conductive material (film) formed on or adhering to a bevel portion, etc. of a substrate or process a peripheral portion of a substrate through an electrochemical action. The substrate processing apparatus includes: an electrode section having a plurality of electrodes which are laminated with insulators being interposed, and having a holding portion which is to be opposed to a peripheral portion of a substrate: an ion exchanger disposed in the holding portion of the electrode section; a liquid supply section for supplying a liquid to the holding position of the electrode section; and a power source for applying a voltage to the electrodes of the electrode section so that the electrodes alternately have different polarities.
    Type: Application
    Filed: July 6, 2004
    Publication date: November 25, 2004
    Inventors: Itsuki Kobata, Mitsuhiko Shirakashi, Masayuki Kumekawa, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Kaoru Yamada, Yuji Makita, Hozumi Yasuda
  • Publication number: 20040206634
    Abstract: The present invention alleviates workloads in chemical-mechanical polishing (CMP) by replacing all or a portion of the substrate processing by means of chemical-mechanical polishing with electrolytic processing using deionized water, ultrapure water or the like and enables processing insuring the higher flatness with the higher efficiency.
    Type: Application
    Filed: June 10, 2004
    Publication date: October 21, 2004
    Inventors: Mitsuhiko Shirakashi, Masayuki Kumekawa, Hozumi Yasuda, Itsuki Kobata, Ikutaro Noji, Kaori Yoshida
  • Publication number: 20040195109
    Abstract: An electrochemical machining apparatus comprises a machining chamber for holding ultrapure water, a cathode/anode immersed in the ultrapure water held in the machining chamber, and a workpiece holding portion for holding a workpiece at a predetermined distance from the cathode/anode so that a surface, to be machined, of the workpiece is brought into contact with the ultrapure water. The electrochemical machining apparatus further comprises an anode/cathode contact brought into contact with the workpiece held by the workpiece holding portion so that the workpiece serves as an anode/cathode, a catalyst having a strongly basic anion exchange function or a strongly acidic cation exchange function, a power source for applying a voltage between the cathode/anode and the workpiece, and a moving mechanism for relatively moving the workpiece and the catalyst. The catalyst is disposed between the cathode/anode and the workpiece held by the workpiece holding portion.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 7, 2004
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Yasushi Toma, Itsuki Kobata, Takayuki Saito
  • Publication number: 20040129569
    Abstract: The present invention provides an electrolytic processing apparatus which, while eliminating a CMP processing entirely or reducing a load on a CMP processing to the least possible extent, can process and flatten a conductive material formed in the surface of a substrate, or can remove (clean) extraneous matter adhering to the surface of a workpiece such as a substrate. The present invention includes an electrode section including a plurality of electrode members disposed in parallel, each electrode member comprising an electrode and an ion exchanger covering the surface of the electrode, a holder for holding a workpiece, which is capable of bringing the workpiece close to or into contact with the ion exchanger of the electrode member, and a power source to be connected to the electrode of each electrode member of the electrode section. The ion exchanger of the electrode member comprises an ion exchanger having an excellent surface smoothness and an ion exchanger having a large ion exchange capacity.
    Type: Application
    Filed: September 25, 2003
    Publication date: July 8, 2004
    Inventors: Osamu Nabeya, Masayuki Kumekawa, Hozumi Yasuda, Itsuki Kobata, Takeshi Ilzumi, Nobuyuki Takada, Koichi Fukaya, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Kaoru Yamada, Yuji Makita
  • Publication number: 20040112761
    Abstract: There is provided a method and device for regenerating an ion exchanger which can regenerate an ion exchanger easily and quickly, and can minimize a load upon cleaning of the regenerated ion exchanger and disposal of waste liquid. A method for regenerating a contaminated ion exchanger includes: providing a pair of a regeneration electrode and a counter electrode, a partition disposed between the electrodes, and an ion exchanger to be regenerated disposed between the counter electrode and the partition; and applying a voltage between the regeneration electrode and the counter electrode while supplying a liquid between the partition and the regeneration electrode and also supplying a liquid between the partition and the counter electrode.
    Type: Application
    Filed: November 18, 2003
    Publication date: June 17, 2004
    Inventors: Takayuki Saito, Tsukuru Suzuki, Yuji Makita, Kaoru Yamada, Masayuki Kumekawa, Hozumi Yasuda, Osamu Nabeya, Kazuto Hirokawa, Mitsuhiko Shirakashi, Yasushi Toma, Itsuki Kobata
  • Patent number: 6743349
    Abstract: An electrochemical machining apparatus comprises a machining chamber for holding ultrapure water, a cathode/anode immersed in the ultrapure water held in the machining chamber, and a workpiece holding portion for holding a workpiece at a predetermined distance from the cathode/anode so that a surface, to be machined, of the workpiece is brought into contact with the ultrapure water. The electrochemical machining apparatus further comprises an anode/cathode contact brought into contact with the workpiece held by the workpiece holding portion so that the workpiece serves as an anode/cathode, a catalyst having a strongly basic anion exchange function or a strongly acidic cation exchange function, a power source for applying a voltage between the cathode/anode and the workpiece, and a moving mechanism for relatively moving the workpiece and the catalyst. The catalyst is disposed between the cathode/anode and the workpiece held by the workpiece holding portion.
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: June 1, 2004
    Assignees: Ebara Corporation
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Yasushi Toma, Itsuki Kobata, Takayuki Saito
  • Publication number: 20030230493
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Application
    Filed: June 2, 2003
    Publication date: December 18, 2003
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata
  • Patent number: 6602396
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Grant
    Filed: November 30, 2001
    Date of Patent: August 5, 2003
    Assignees: Ebara Corporation
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata
  • Publication number: 20030136668
    Abstract: There is provided an electrolytic processing device including: a processing electrode brought into contact with or close to a workpiece; a feeding electrode for supplying electricity to the workpiece; an ion exchanger disposed in at least one of the spaces between the workpiece and the processing electrode, and between the workpiece and the feeding electrode; a power source for applying a voltage between the processing electrode and the feeding electrode; and a liquid supply section for supplying a liquid to the space between the workpiece and at least one of the processing electrode and the feeding electrode, in which the ion exchanger is present. A substrate processing apparatus having the electrolytic processing device is also provided.
    Type: Application
    Filed: January 7, 2003
    Publication date: July 24, 2003
    Inventors: Itsuki Kobata, Mitsuhiko Shirakashi, Masayuki Kumekawa, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Kaoru Yamada, Yuji Makita, Hozumi Yasuda
  • Publication number: 20030132103
    Abstract: There is provided an electrolytic processing device including: a processing electrode brought into contact with or close to a workpiece; a feeding electrode for supplying electricity to the workpiece; an ion exchanger disposed in at least one of the spaces between the workpiece and the processing electrode, and between the workpiece and the feeding electrode; a power source for applying a voltage between the processing electrode and the feeding electrode; and a liquid supply section or supplying a liquid to the space between the workpiece and at least one of the processing electrode and the feeding electrode, in which the ion exchanger is present. A substrate processing apparatus having the electrolytic processing device is also provided.
    Type: Application
    Filed: November 22, 2002
    Publication date: July 17, 2003
    Inventors: Itsuki Kobata, Mitsuhiko Shirakashi, Masayuki Kumekawa, Takayuki Saito, Yasushi Toma, Tsukuru Suzuki, Kaoru Yamada, Yuji Makita
  • Patent number: 6368493
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Grant
    Filed: August 25, 2000
    Date of Patent: April 9, 2002
    Assignees: Ebara Corporation
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata
  • Publication number: 20020033343
    Abstract: An anode as a workpiece, and a cathode opposed to the anode with a predetermined spacing are placed in ultrapure water. A catalytic material promoting dissociation of the ultrapure water and having water permeability is disposed between the workpiece and the cathode. A flow of the ultrapure water is formed inside the catalytic material, with a voltage being applied between the workpiece and the cathode, to decompose water molecules in the ultrapure water into hydrogen ions and hydroxide ions, and supply the resulting hydroxide ions to a surface of the workpiece, thereby performing removal processing of or oxide film formation on the workpiece through a chemical dissolution reaction or an oxidation reaction mediated by the hydroxide ions. Thus, clean processing can be performed by use of hydroxide ions in ultrapure water, with no impurities left behind on the processed surface of the workpiece.
    Type: Application
    Filed: November 30, 2001
    Publication date: March 21, 2002
    Inventors: Yuzo Mori, Mitsuhiko Shirakashi, Takayuki Saito, Yasushi Toma, Akira Fukunaga, Itsuki Kobata