Patents by Inventor Itsuya SATO

Itsuya SATO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10710155
    Abstract: Provided is a mixed powder for powder metallurgy having a chemical system not using Ni which causes non-uniform metallic microstructure in a sintered body. A mixed powder for powder metallurgy comprises: a partially diffusion alloyed steel powder in which Mo diffusionally adheres to a particle surface of an iron-based powder; a Cu powder; and a graphite powder, wherein the mixed powder for powder metallurgy has a chemical composition containing Mo: 0.2 mass % to 1.5 mass %, Cu: 0.5 mass % to 4.0 mass %, and C: 0.1 mass % to 1.0 mass %, with the balance consisting of Fe and inevitable impurities, and the partially diffusion alloyed steel powder has: a mean particle diameter of 30 ?m to 120 ?m; a specific surface area of less than 0.10 m2/g; and a circularity of particles with a diameter in a range from 50 ?m to 100 ?m of 0.65 or less.
    Type: Grant
    Filed: September 16, 2016
    Date of Patent: July 14, 2020
    Assignee: JFE STEEL CORPORATION
    Inventors: Takuya Takashita, Akio Kobayashi, Naomichi Nakamura, Itsuya Sato
  • Patent number: 10207328
    Abstract: An Fe—Mo—Cu—C-based alloy steel powder for powder metallurgy has a chemical composition containing Mo: 0.2 mass % to 1.5 mass %, Cu: 0.5 mass % to 4.0 mass %, and C: 0.1 mass % to 1.0 mass %, with a balance being Fe and incidental impurities, wherein an iron-based powder has a mean particle size of 30 ?m to 120 ?m, and a Cu powder has a mean particle size of 25 ?m or less. Despite the alloy steel powder for powder metallurgy having a chemical composition not containing Ni, a part produced by sintering a press formed part of the powder and further carburizing-quenching-tempering the sintered part has mechanical properties of at least as high tensile strength, toughness, and sintered density as a Ni-added part.
    Type: Grant
    Filed: November 24, 2015
    Date of Patent: February 19, 2019
    Assignee: JFE STEEL CORPORATION
    Inventors: Takuya Takashita, Akio Kobayashi, Naomichi Nakamura, Toshio Maetani, Akio Sonobe, Itsuya Sato
  • Publication number: 20180193908
    Abstract: Provided is a mixed powder for powder metallurgy having a chemical system not using Ni which causes non-uniform metallic microstructure in a sintered body. A mixed powder for powder metallurgy comprises: a partially diffusion alloyed steel powder in which Mo diffusionally adheres to a particle surface of an iron-based powder; a Cu powder; and a graphite powder, wherein the mixed powder for powder metallurgy has a chemical composition containing Mo: 0.2 mass % to 1.5 mass %, Cu: 0.5 mass % to 4.0 mass %, and C: 0.1 mass % to 1.0 mass %, with the balance consisting of Fe and inevitable impurities, and the partially diffusion alloyed steel powder has: a mean particle diameter of 30 ?m to 120 ?m; a specific surface area of less than 0.10 m2/g; and a circularity of particles with a diameter in a range from 50 ?m to 100 ?m of 0.65 or less.
    Type: Application
    Filed: September 16, 2016
    Publication date: July 12, 2018
    Applicant: JFE STEEL CORPORATION
    Inventors: Takuya TAKASHITA, Akio KOBAYASHI, Naomichi NAKAMURA, Itsuya SATO
  • Publication number: 20180193911
    Abstract: A method of producing a mixed powder for powder metallurgy comprises: mixing an iron-based powder with a Mo-containing powder and a Cu-containing powder, to obtain a raw material mixed powder; heat-treating the raw material mixed powder to cause Mo and Cu to diffusionally adhere to a surface of the iron-based powder, to obtain a partially diffusion-alloyed steel powder; and mixing the partially diffusion-alloyed steel powder with a graphite powder, to obtain a mixed powder for powder metallurgy, wherein the iron-based powder has an average particle size of 30 ?m to 120 ?m, a cuprous oxide powder is used as the Cu-containing powder, and the mixed powder for powder metallurgy has a chemical composition containing Mo: 0.2 mass % to 1.5 mass %, Cu: 0.5 mass % to 4.0 mass %, and C: 0.1 mass % to 1.0 mass %, with a balance being Fe and incidental impurities.
    Type: Application
    Filed: September 12, 2016
    Publication date: July 12, 2018
    Applicant: JFE STEEL CORPORATION
    Inventors: Akio KOBAYASHI, Naomichi NAKAMURA, Toshio MAETANI, Akio SONOBE, Itsuya SATO
  • Publication number: 20180178291
    Abstract: Provided is an iron-based sintered body having excellent mechanical properties. In the sintered body, the area fraction of pores is 15% or less and the area-based median size D50 of the pores is 20 82 m or less.
    Type: Application
    Filed: September 16, 2016
    Publication date: June 28, 2018
    Applicant: JFE STEEL CORPORATION
    Inventors: Takuya TAKASHITA, Akio KOBAYASHI, Naomichi NAKAMURA, Itsuya SATO
  • Publication number: 20170259340
    Abstract: An Fe—Mo—Cu—C-based alloy steel powder for powder metallurgy has a chemical composition containing Mo: 0.2 mass % to 1.5 mass %, Cu: 0.5 mass % to 4.0 mass %, and C: 0.1 mass % to 1.0 mass %, with a balance being Fe and incidental impurities, wherein an iron-based powder has a mean particle size of 30 ?m to 120 ?m, and a Cu powder has a mean particle size of 25 ?m or less. Despite the alloy steel powder for powder metallurgy having a chemical composition not containing Ni, a part produced by sintering a press formed part of the powder and further carburizing-quenching-tempering the sintered part has mechanical properties of at least as high tensile strength, toughness, and sintered density as a Ni-added part.
    Type: Application
    Filed: November 24, 2015
    Publication date: September 14, 2017
    Applicant: JFE STEEL CORPORATION
    Inventors: Takuya TAKASHITA, Akio KOBAYASHI, Naomichi NAKAMURA, Toshio MAETANI, Akio SONOBE, Itsuya SATO