Patents by Inventor Itzhak Edrei

Itzhak Edrei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8999785
    Abstract: Flash-to-ROM conversion is performed by converting single transistor flash memory cells to single transistor ROM cells. An S-Flash memory cell is converted to a programmed ROM cell by introducing a threshold voltage implant into the channel region of the S-Flash memory cell. Alternately, an S-Flash memory cell is converted to a programmed ROM cell by introducing a threshold voltage implant into a substrate region in alignment with an edge of the gate electrode of the S-Flash memory cell. The width of the mask through which this threshold voltage implant is performed can be varied, such that the threshold voltage implant region can have different dopant concentrations, thereby allowing multiple bits to be represented by the programmed ROM cell. In another embodiment, a Y-flash memory cell is converted to a programmed ROM cell by adjusting the length of a floating gate extension region of the Y-Flash memory cell.
    Type: Grant
    Filed: September 27, 2011
    Date of Patent: April 7, 2015
    Assignee: Tower Semiconductor Ltd.
    Inventors: Itzhak Edrei, Yakov Roizin
  • Publication number: 20130075803
    Abstract: Flash-to-ROM conversion is performed by converting single transistor flash memory cells to single transistor ROM cells. An S-Flash memory cell is converted to a programmed ROM cell by introducing a threshold voltage implant into the channel region of the S-Flash memory cell. Alternately, an S-Flash memory cell is converted to a programmed ROM cell by introducing a threshold voltage implant into a substrate region in alignment with an edge of the gate electrode of the S-Flash memory cell. The width of the mask through which this threshold voltage implant is performed can be varied, such that the threshold voltage implant region can have different dopant concentrations, thereby allowing multiple bits to be represented by the programmed ROM cell. In another embodiment, a Y-flash memory cell is converted to a programmed ROM cell by adjusting the length of a floating gate extension region of the Y-Flash memory cell.
    Type: Application
    Filed: September 27, 2011
    Publication date: March 28, 2013
    Applicant: Tower Semiconductor Ltd.
    Inventors: Itzhak Edrei, Yakov Roizin
  • Patent number: 7390718
    Abstract: An embedded semiconductor memory is fabricated by: forming diffusion bit line regions in a semiconductor substrate; then thermally oxidizing the upper surface of the substrate, thereby forming a bottom oxide layer over the substrate and simultaneously forming bit line oxide regions over each of the diffusion bit line regions; and then forming an intermediate dielectric layer (e.g., silicon nitride), over the bottom oxide layer and the bit line oxide regions. CMOS well implants are then performed in a CMOS section of the device through the silicon nitride layer and bottom oxide layer. The silicon nitride layer and bottom oxide layer are then removed in the CMOS section, and a top dielectric layer, such as a high-temperature oxide or a high-k dielectric, is deposited. The top dielectric layer completes a memory stack of the memory device, and forms a gate dielectric layer of a high voltage transistor in the CMOS section.
    Type: Grant
    Filed: February 20, 2004
    Date of Patent: June 24, 2008
    Assignee: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Zmira Shterenfeld-Lavie, Itzhak Edrei
  • Publication number: 20050186741
    Abstract: An embedded semiconductor memory is fabricated by: forming diffusion bit line regions in a semiconductor substrate; then thermally oxidizing the upper surface of the substrate, thereby forming a bottom oxide layer over the substrate and simultaneously forming bit line oxide regions over each of the diffusion bit line regions; and then forming an intermediate dielectric layer (e.g., silicon nitride), over the bottom oxide layer and the bit line oxide regions. CMOS well implants are then performed in a CMOS section of the device through the silicon nitride layer and bottom oxide layer. The silicon nitride layer and bottom oxide layer are then removed in the CMOS section, and a top dielectric layer, such as a high-temperature oxide or a high-k dielectric, is deposited. The top dielectric layer completes a memory stack of the memory device, and forms a gate dielectric layer of a high voltage transistor in the CMOS section.
    Type: Application
    Filed: February 20, 2004
    Publication date: August 25, 2005
    Applicant: Tower Semiconductor Ltd.
    Inventors: Yakov Roizin, Zmira Shterenfeld-Lavie, Itzhak Edrei
  • Patent number: 6686276
    Abstract: A semiconductor process is provided that creates transistors having polycide gates in a first region of a semiconductor substrate and transistors having salicide gates in a second region of the semiconductor substrate. A polysilicon layer having a first portion in the first region and a second portion in the second region is formed over the semiconductor substrate. Then, a first dielectric layer is formed over the second portion of the polysilicon layer. Metal silicide is deposited over first portion of the polysilicon layer and the first dielectric layer. The metal silicide overlying the first dielectric layer is removed as is the first dielectric layer. The metal silicide and the polysilicon layer are etched to form polycide gates in the first region and polysilicon gates in the second region. A second dielectric layer is formed over the first region. Refractory metal is then deposited over the resulting structure and reacted. As a result, salicide is formed on the polysilicon gates of the second region.
    Type: Grant
    Filed: August 22, 2002
    Date of Patent: February 3, 2004
    Assignee: Tower Semiconductor Ltd.
    Inventors: Itzhak Edrei, Efraim Aloni
  • Publication number: 20030001220
    Abstract: A semiconductor process is provided that creates transistors having polycide gates in a first region of a semiconductor substrate and transistors having salicide gates in a second region of the semiconductor substrate. A polysilicon layer having a first portion in the first region and a second portion in the second region is formed over the semiconductor substrate. Then, a first dielectric layer is formed over the second portion of the polysilicon layer. Metal silicide is deposited over first portion of the polysilicon layer and the first dielectric layer. The metal silicide overlying the first dielectric layer is removed as is the first dielectric layer. The metal silicide and the polysilicon layer are etched to form polycide gates in the first region and polysilicon gates in the second region. A second dielectric layer is formed over the first region. Refractory metal is then deposited over the resulting structure and reacted. As a result, salicide is formed on the polysilicon gates of the second region.
    Type: Application
    Filed: August 22, 2002
    Publication date: January 2, 2003
    Inventors: Itzhak Edrei, Efraim Aloni
  • Patent number: 5691247
    Abstract: An improved method for depositing the cap layer of a flow fill layer of an integrated circuit. The cap layer is deposited in at least two steps, instead of all at once.
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: November 25, 1997
    Assignee: Tower Semiconductor Ltd.
    Inventors: Zmira Lavie, Aviad Roth, Jeff Levy, Itzhak Edrei