Patents by Inventor Iulian Gheorghe

Iulian Gheorghe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8557062
    Abstract: A copper-free wrought aluminum alloy product and method for producing the same are provided. In one example, the alloy has a composition of about 0.01 to about 1.5 weight percent silver; about 1.0 to about 3.0 weight percent magnesium; about 4.0 to about 10.0 weight percent zinc; about 0.05 to about 0.25 weight percent zirconium; a maximum of 0.15 weight percent iron; a maximum of 0.15 weight percent silicon; and a remainder including aluminum, incidental elements, and impurities. In one example, the alloy may be used to manufacture structural elements for aircraft.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: October 15, 2013
    Assignee: The Boeing Company
    Inventors: Burke L. Reichlinger, Brien J. McElroy, Iulian Gheorghe
  • Publication number: 20090180920
    Abstract: A copper-free wrought aluminum alloy product and method for producing the same are provided. In one example, the alloy has a composition of about 0.01 to about 1.5 weight percent silver; about 1.0 to about 3.0 weight percent magnesium; about 4.0 to about 10.0 weight percent zinc; about 0.05 to about 0.25 weight percent zirconium; a maximum of 0.15 weight percent iron; a maximum of 0.15 weight percent silicon; and a remainder including aluminum, incidental elements, and impurities. In one example, the alloy may be used to manufacture structural elements for aircraft.
    Type: Application
    Filed: January 14, 2008
    Publication date: July 16, 2009
    Inventors: Burke L. Reichlinger, Brien J. McElroy, Iulian Gheorghe
  • Publication number: 20080305000
    Abstract: Al—Mg—Ag wrought products and methods of making such products useful in aircraft applications. The Al—Mg—Ag wrought products have improved strength when compared to traditional AA5XXX alloys. The alloys may comprise from about 3.5 to about 10 weight percent Mg, from about 0.05 to about 0.5 weight percent Ag, from about 0.01 to about 1.0 weight percent Mn, from about 0.01 to about 0.15 weight percent Zr, and the remainder Al and incidental impurities. In addition, from about 0.05 to about 0.4 weight percent Sc may be added to further improve the strength characteristics.
    Type: Application
    Filed: May 12, 2008
    Publication date: December 11, 2008
    Inventors: Iulian Gheorghe, Victor B. Dangerfield
  • Patent number: 7360676
    Abstract: A method of welding age-hardenable aluminum alloys to improve strength properties in the heat affected zone and the weld zone, the method comprising the steps of providing precipitation hardenable aluminum alloy members to be welded and subjecting said members to a first aging step for times and temperatures to generated strengthening precipitates. Thereafter, the aged members are welded to provide a welded assembly having a weld zone. The welded members are subjected to a second aging step to reprecipitate strengthening precipitates dissolved in the weld zone.
    Type: Grant
    Filed: September 15, 2003
    Date of Patent: April 22, 2008
    Assignee: Universal Alloy Corporation
    Inventor: Iulian Gheorghe
  • Publication number: 20070187007
    Abstract: An aluminum alloy extrusion product having improved strength and fracture toughness, the aluminum base alloy comprised of 1.95 to 2.5 wt. % Cu, 1.9 to 2.5 wt. % Mg, 8.2 to 10 wt. % Zn, 0.05 to 0.25 wt. % Zr, max. 0.15 wt. % Si, max. 0.15 wt. % Fe, max. 0.1 wt. % Mn, the remainder aluminum and incidental elements and impurities.
    Type: Application
    Filed: March 30, 2007
    Publication date: August 16, 2007
    Inventors: Iulian Gheorghe, Dean Malejan, Rene Machler
  • Patent number: 7214281
    Abstract: An aluminum alloy extrusion product having improved strength and fracture toughness, the aluminum base alloy comprised of 1.95 to 2.5 wt. % Cu, 1.9 to 2.5 wt. % Mg, 8.2 to 10 wt. % Zn, 0.05 to 0.25 wt. % Zr, max. 0.15 wt. % Si, max. 0.15 wt. % Fe, max. 0.1 wt. % Mn, the remainder aluminum and incidental elements and impurities.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: May 8, 2007
    Assignee: Universal Alloy Corporation
    Inventors: Iulian Gheorghe, Dean C. Malejan, Rene Mächler
  • Publication number: 20070029016
    Abstract: An aluminum alloy flat rolled product having improved strength and fracture toughness, the aluminum base alloy comprised of 1.95 to 2.5 wt. % Cu, 1.95 to 2.5 wt. % Mg, 8.2 to 10 wt. % Zn, 0.05 to 0.25 wt. % Zr, max. 0.15 wt. % Si, max. 0.15 wt. % Fe, max. 0.1 wt. % Mn, the remainder aluminum and incidental elements and impurities.
    Type: Application
    Filed: April 14, 2006
    Publication date: February 8, 2007
    Inventor: Iulian Gheorghe
  • Publication number: 20050236075
    Abstract: An aluminum alloy extrusion product having improved strength and fracture toughness, the aluminum base alloy comprised of 1.95 to 2.5 wt. % Cu, 1.9 to 2.5 wt. % Mg, 8.2 to 10 wt. % Zn, 0.05 to 0.25 wt. % Zr, max. 0.15 wt. % Si, max. 0.15 wt. % Fe, max. 0.1 wt. % Mn, the remainder aluminum and incidental elements and impurities.
    Type: Application
    Filed: March 18, 2005
    Publication date: October 27, 2005
    Inventors: Iulian Gheorghe, Dean Malejan, Rene Machler
  • Publication number: 20040099352
    Abstract: An aluminum alloy extrusion product having improved strength and fracture toughness, the aluminum base alloy comprised of 1.95 to 2.5 wt. % Cu, 1.9 to 2.5 wt. % Mg, 8.2 to 10 wt. % Zn, 0.05 to 0.25 wt. % Zr, max. 0.15 wt. % Si, max. 0.15 wt. % Fe, max. 0.1 wt. % Mn, the remainder aluminum and incidental elements and impurities.
    Type: Application
    Filed: September 15, 2003
    Publication date: May 27, 2004
    Inventors: Iulian Gheorghe, Dean C. Malejan, Rene Machler
  • Publication number: 20040056075
    Abstract: A method of welding age-hardenable aluminum alloys to improve strength properties in the heat affected zone and the weld zone, the method comprising the steps of providing precipitation hardenable aluminum alloy members to be welded and subjecting said members to a first aging step for times and temperatures to generated strengthening precipitates. Thereafter, the aged members are welded to provide a welded assembly having a weld zone. The welded members are subjected to a second aging step to reprecipitate strengthening precipitates dissolved in the weld zone.
    Type: Application
    Filed: September 15, 2003
    Publication date: March 25, 2004
    Inventor: Iulian Gheorghe