Patents by Inventor Ivan Celanovic

Ivan Celanovic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10073191
    Abstract: A filter to transmit incident radiation at a predetermined incidence angle includes a plurality of photonic crystal structures disposed substantially along a surface normal direction of the filter. The photonic crystal structure includes a multilayer cell that comprises a first layer having a first dielectric permittivity, and a second layer having a second dielectric permittivity different from the first dielectric permittivity. The first layer and the second layer define a Brewster angle substantially equal to the predetermined incidence angle based on the first dielectric permittivity and the second permittivity. Each photonic crystal structure in the plurality of photonic crystal structures defines a respective bandgap, and the respective bandgaps of the plurality of photonic crystal structures, taken together, cover a continuous spectral region of about 50 nm to about 100 mm.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: September 11, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Yichen Shen, Dexin Ye, Ivan Celanovic, Steven G. Johnson, John D. Joannopoulos, Marin Soljacic
  • Publication number: 20180159460
    Abstract: An apparatus for generating electricity via thermophotovoltaic (TPV) energy conversion includes a metallic combustor to convert fuel into heat. The apparatus also includes a metallic photonic crystal to emit electromagnetic radiation within a predetermined wavelength band in response to receiving the heat from the combustor. A brazing layer is disposed between the combustor and the photonic crystal to couple the combustor with the photonic crystal. The apparatus also includes a photovoltaic cell, in electromagnetic communication with the photonic crystal, to convert the electromagnetic radiation emitted by the photonic crystal into electricity.
    Type: Application
    Filed: December 6, 2017
    Publication date: June 7, 2018
    Inventors: Walker Chan, Ivan Celanovic, John D. Joannopoulos, Marin Soljacic, Veronika Stelmakh
  • Patent number: 9929690
    Abstract: A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: March 27, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Andrej Lenert, David Bierman, Walker Chan, Ivan Celanovic, Marin Soljacic, Evelyn N. Wang, Young Suk Nam, Kenneth McEnaney, Daniel Kraemer, Gang Chen
  • Publication number: 20160252652
    Abstract: A filter to transmit incident radiation at a predetermined incidence angle includes a plurality of photonic crystal structures disposed substantially along a surface normal direction of the filter. The photonic crystal structure includes a multilayer cell that comprises a first layer having a first dielectric permittivity, and a second layer having a second dielectric permittivity different from the first dielectric permittivity. The first layer and the second layer define a Brewster angle substantially equal to the predetermined incidence angle based on the first dielectric permittivity and the second permittivity. Each photonic crystal structure in the plurality of photonic crystal structures defines a respective bandgap, and the respective bandgaps of the plurality of photonic crystal structures, taken together, cover a continuous spectral region of about 50 nm to about 100 mm.
    Type: Application
    Filed: February 24, 2015
    Publication date: September 1, 2016
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Yichen Shen, Dexin Ye, Ivan Celanovic, Steven G. Johnson, John D. Joannopoulos, Marin Soljacic
  • Publication number: 20160164451
    Abstract: A solar thermal photovoltaic device, and method of forming same, includes a solar absorber and a spectrally selective emitter formed on either side of a thermally conductive substrate. The solar absorber is configured to absorb incident solar radiation. The solar absorber and the spectrally selective emitter are configured with an optimized emitter-to-absorber area ratio. The solar thermal photovoltaic device also includes a photovoltaic cell in thermal communication with the spectrally selective emitter. The spectrally selective emitter is configured to permit high emittance for energies above a bandgap of the photovoltaic cell and configured to permit low emittance for energies below the bandgap.
    Type: Application
    Filed: October 31, 2014
    Publication date: June 9, 2016
    Inventors: Andrej Lenert, David Bierman, Walker Chan, Ivan Celanovic, Marin Soljacic, Evelyn N. Wang, Young Suk Nam, Kenneth McEnaney, Daniel Kraemer, Gang Chen
  • Patent number: 9116537
    Abstract: Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: August 25, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Ivan Celanovic, Walker Chan, Peter Bermel, Adrian Y. X. Yeng, Christopher Marton, Michael Ghebrebrhan, Mohammad Araghchini, Klavs F. Jensen, Marin Soljacic, John D. Joannopoulos, Steven G. Johnson, Robert Pilawa-Podgurski, Peter Fisher
  • Patent number: 9057830
    Abstract: The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: June 16, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Rafif E. Hamam, Peter Bermel, Ivan Celanovic, Marin Soljacic, Adrian Y. X. Yeng, Michael Ghebrebrhan, John D. Joannopoulos
  • Patent number: 8823250
    Abstract: Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: September 2, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Peter Bermel, Ognjen Ilic, Walker R. Chan, Ahmet Musabeyoglu, Aviv Ruben Cukierman, Michael Robert Harradon, Ivan Celanovic, Marin Soljacic
  • Publication number: 20140042890
    Abstract: Incandescent lighting structure. The structure includes a thermal emitter that can, but does not have to, include a first photonic crystal on its surface to tailor thermal emission coupled to, in a high-view-factor geometry, a second photonic filter selected to reflect infrared radiation back to the emitter while passing visible light. This structure is highly efficient as compared to standard incandescent light bulbs.
    Type: Application
    Filed: January 2, 2013
    Publication date: February 13, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Peter Bermel, Ognjen llic, Walker R. Chan, Ahmet Musabeyoglu, Aviv Ruben Cukieman, Michael Robert Harradon, Ivan Celanovic, Marin Soijacic
  • Publication number: 20120037217
    Abstract: The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence.
    Type: Application
    Filed: July 19, 2011
    Publication date: February 16, 2012
    Applicant: Massachusetts Institute of Technology
    Inventors: Rafif E. Hamam, Peter Bermel, Ivan Celanovic, Marin Soljacic, Adrian Y.X. Yeng, Michael Ghebrebrhan, John D. Joannopoulos
  • Publication number: 20110284059
    Abstract: Inventive systems and methods for the generation of energy using thermophotovoltaic cells are described. Also described are systems and methods for selectively emitting electromagnetic radiation from an emitter for use in thermophotovoltaic energy generation systems. In at least some of the inventive energy generation systems and methods, a voltage applied to the thermophotovoltaic cell (e.g., to enhance the power produced by the cell) can be adjusted to enhance system performance. Certain embodiments of the systems and methods described herein can be used to generate energy relatively efficiently.
    Type: Application
    Filed: May 20, 2011
    Publication date: November 24, 2011
    Applicant: Massachusetts Institute of Technology
    Inventors: Ivan Celanovic, Walker Chan, Peter Bermel, Adrian Y.X. Yeng, Christopher Marton, Michael Ghebrebrhan, Mohammad Araghchini, Klavs F. Jensen, Marin Soljacic, John D. Joannopoulos, Steven G. Johnson, Robert Pilawa-Podgurski, Peter Fisher
  • Patent number: 7482610
    Abstract: A thermal emitter device includes a cavity structure that comprises an active medium for allowing thermal emissions to occur. A photonic crystal structure is positioned on one side of the cavity structure. The photonic crystal structure comprises alternating layers of high index and low index materials and acts as a first mirror for the cavity structure. A highly reflective mirror structure is positioned on another side of the cavity structure and acting as both the high-temperature source of radiation and a second mirror for the cavity structure.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: January 27, 2009
    Assignee: Massachusetts Institute of Technology
    Inventors: Ivan Celanovic, John G. Kassakian, David J. Perrault
  • Patent number: 7251402
    Abstract: Light transmission is maximized through the pass band of a photonic bandgap (PBG) crystal (having alternating high- and low-index material) while preserving high reflection for stop band. An anti-reflective coating (ARC) is used to coat the PBG crystal wherein the ARC material has a refractive index of n=(nairĂ—nhigh index material)1/2 and thickness around ?c/8 where ?c is center wavelength.
    Type: Grant
    Filed: August 23, 2005
    Date of Patent: July 31, 2007
    Assignee: Massachusetts Institute of Technology
    Inventors: Shoji Akiyama, Ivan Celanovic, Natalija Z. Jovanovic, Francis O'Sullivan, Kazumi Wada
  • Publication number: 20070053651
    Abstract: Light transmission is maximized through the pass band of a photonic bandgap (PBG) crystal (having alternating high- and low-index material) while preserving high reflection for stop band. An anti-reflective coating (ARC) is used to coat the PBG crystal wherein the ARC material has a refractive index of n=(nairĂ—nhigh index material)1/2 and thickness around ?c/8 where ?c is center wavelength.
    Type: Application
    Filed: August 23, 2005
    Publication date: March 8, 2007
    Inventors: Shoji Akiyama, Ivan Celanovic, Natalija Jovanovic, Francis O'Sullivan, Kazumi Wada
  • Publication number: 20060186357
    Abstract: A thermal emitter device includes a cavity structure that comprises an active medium for allowing thermal emissions to occur. A photonic crystal structure is positioned on one side of the cavity structure. The photonic crystal structure comprises alternating layers of high index and low index materials and acts as a first mirror for the cavity structure. A highly reflective mirror structure is positioned on another side of the cavity structure and acting as both the high-temperature source of radiation and a second mirror for the cavity structure.
    Type: Application
    Filed: January 13, 2006
    Publication date: August 24, 2006
    Inventors: Ivan Celanovic, John Kassakian, David Perrault
  • Patent number: RE47157
    Abstract: The present invention provides systems, articles, and methods for discriminating electromagnetic radiation based upon the angle of incidence of the electromagnetic radiation. In some cases, the materials and systems described herein can be capable of inhibiting reflection of electromagnetic radiation (e.g., the materials and systems can be capable of transmitting and/or absorbing electromagnetic radiation) within a given range of angles of incidence at a first incident surface, while substantially reflecting electromagnetic radiation outside the range of angles of incidence at a second incident surface (which can be the same as or different from the first incident surface). A photonic material comprising a plurality of periodically occurring separate domains can be used, in some cases, to selectively transmit and/or selectively absorb one portion of incoming electromagnetic radiation while reflecting another portion of incoming electromagnetic radiation, based upon the angle of incidence.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: December 11, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Rafif E. Hamam, Peter Bermel, Ivan Celanovic, Marin Soljacic, Adrian Y. X. Yeng, Michael Ghebrebrhan, John D. Joannopoulos