Patents by Inventor Ivan Kassamakov

Ivan Kassamakov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10839558
    Abstract: An artifact for determining resolution of imaging based on electromagnetic radiation, mechanical waves, or both is presented. The artifact includes a substrate and layers on top of the substrate. The layers include organic material and are stacked on each other in a partially overlapping way so that an edge of a first one of the layers is arranged to intersect with an edge of a second one of the layers. The layers constitute a three-dimensional surface topography where a groove defined by the edges of the first and second ones of the layers is tapering towards a point of intersection between the edges. The resolution is a minimum width of the tapering groove which is revealed by the imaging so that a pre-determined criterion is fulfilled.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: November 17, 2020
    Assignee: NANOFORM FINLAND OYJ
    Inventors: Edward Hæggström, Ivan Kassamakov, Anton Nolvi, Niklas Sandler, Tapani Viitala, Johan Nyman
  • Publication number: 20200320741
    Abstract: An artifact for determining resolution of imaging based on electromagnetic radiation, mechanical waves, or both is presented. The artifact includes a substrate and layers on top of the substrate. The layers include organic material and are stacked on each other in a partially overlapping way so that an edge of a first one of the layers is arranged to intersect with an edge of a second one of the layers. The layers constitute a three-dimensional surface topography where a groove defined by the edges of the first and second ones of the layers is tapering towards a point of intersection between the edges. The resolution is a minimum width of the tapering groove which is revealed by the imaging so that a pre-determined criterion is fulfilled.
    Type: Application
    Filed: May 8, 2017
    Publication date: October 8, 2020
    Inventors: Edward HÆGGSTRÖM, Ivan KASSAMAKOV, Anton NOLVI, Niklas SANDLER, Tapani VIITALA, Johan NYMAN
  • Patent number: 10765558
    Abstract: An intraocular pressure measurement arrangement is disclosed for measuring pressure of an eye of a patient. The arrangement can detect at least one of acoustic reflectivity, optical reflectivity, optical path difference, positioning of intraocular pressure measurement arrangement with respect to the eye, orientation of intraocular pressure measurement arrangement with respect to the eye, shape of cornea and corneal thickness. At least one source can produce acoustic, nonlinear acoustic, mechanical or a nonlinear mechanical wave from a distance, coupling to the eye to generate at least one surface wave. Upon triggering data acquisition, at least one surface wave from a distance from the eye can be detected to extract surface wave information with pressure information of the eye being based on the surface wave information.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: September 8, 2020
    Assignee: PHOTONO OY
    Inventors: Edward Haeggström, Ari Salmi, Ivan Kassamakov, Heikki Nieminen, Timo Rauhala, Kalle Hanhijärvi, Antti Kontiola
  • Publication number: 20190323820
    Abstract: An artifact for improving the vertical resolution of radiation-based imaging is presented. The artifact has a stepped thickness profile with steps. Adjacent steps are arranged to interact differently with radiation used in the radiation-based imaging. Thus, it is possible to identify which step is, in each imaging situation, vertically closest to the imaging plane related to the radiation-based imaging. Thus, a pre-determined vertical position-value related to the closest one of the steps can be used as a vertical position-value related to a radiation-based imaging result obtained in the imaging situation.
    Type: Application
    Filed: December 12, 2017
    Publication date: October 24, 2019
    Inventors: Ivan KASSAMAKOV, Edward HAEGGSTRÖM, Niklas SANDLER, Anton NOLVI, Tapani VIITALA, Alejandro Garcia PEREZ
  • Patent number: 10345093
    Abstract: An arrangement for determining four-dimensional properties of an interface of an object, including a light source includes: a unit for forming photonic jets, a unit for performing large field of view interferometric imaging of the interface and their combination, a unit for passing the light being close to the interface and direct the light to the interface, and an image unit. The arrangement includes a unit for performing phase shifting interferometric imaging of the interface, imaging a unit for receiving light from the interface modulated by e.g. microspheres for forming super-resolution image information by combining light interferometry with the photonic jets, and a processor unit for determining four-dimensional properties of the interface on the basis of the image information formed by the phase shifting interferometric imaging by utilizing effect of the photonic jets. The arrangement also can also include a unit to carry out the measurement using polarized light.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: July 9, 2019
    Assignee: UNIVERSITY OF HELSINKI
    Inventors: Ivan Kassamakov, Edward Haeggström
  • Patent number: 10234266
    Abstract: A method for calibrating electromagnetic radiation-based three-dimensional imaging includes: obtaining (501) a calibration imaging result at least partly on the basis of electromagnetic waves received from a calibration artifact, forming (502) calibration data on the basis of the calibration imaging result and a known thickness profile of the calibration artifact, and correcting (503), with the aid of the calibration data, an imaging result obtained at least partly on the basis of electromagnetic waves received from a sample to be imaged. The calibration artifact includes layers, for example Langmuir-Blodgett films, having pre-determined thicknesses and stacked on each other so as to achieve the pre-determined thickness profile of the calibration artifact. A three-dimensional imaging system configured to carry out the method.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: March 19, 2019
    Assignees: ABO AKADEMI (ABO AKADEMI UNIVERSITY), HELSINGIN YLIOPISTO
    Inventors: Edward Hæggstrom, Ivan Kassamakov, Anton Nolvi, Tuomo Ylitalo, Niklas Sandler, Tapani Viitala, Johan Nyman
  • Publication number: 20180372476
    Abstract: An arrangement for determining four-dimensional properties of an interface of an object, including a light source includes: a unit for forming photonic jets, a unit for performing large field of view interferometric imaging of the interface and their combination, a unit for passing the light being close to the interface and direct the light to the interface, and an image unit. The arrangement includes a unit for performing phase shifting interferometric imaging of the interface, imaging a unit for receiving light from the interface modulated by e.g. microspheres for forming super-resolution image information by combining light interferometry with the photonic jets, and a processor unit for determining four-dimensional properties of the interface on the basis of the image information formed by the phase shifting interferometric imaging by utilizing effect of the photonic jets. The arrangement also can also include a unit to carry out the measurement using polarized light.
    Type: Application
    Filed: December 11, 2015
    Publication date: December 27, 2018
    Inventors: Ivan KASSAMAKOV, Edward HAEGGSTRÖM
  • Publication number: 20180193194
    Abstract: An intraocular pressure measurement arrangement is disclosed for measuring pressure of an eye of a patient. The arrangement can detect at least one of acoustic reflectivity, optical reflectivity, optical path difference, positioning of intraocular pressure measurement arrangement with respect to the eye, orientation of intraocular pressure measurement arrangement with respect to the eye, shape of cornea and corneal thickness. At least one source can produce acoustic, nonlinear acoustic, mechanical or a nonlinear mechanical wave from a distance, coupling to the eye to generate at least one surface wave. Upon triggering data acquisition, at least one surface wave from a distance from the eye can be detected to extract surface wave information with pressure information of the eye being based on the surface wave information.
    Type: Application
    Filed: March 5, 2018
    Publication date: July 12, 2018
    Applicant: PHOTONO OY
    Inventors: Edward HAEGGSTRÖM, Ari SALMI, Ivan KASSAMAKOV, Heikki NIEMINEN, Timo RAUHALA, Kalle HANHIJÄRVI, Antti KONTIOLA
  • Publication number: 20170261309
    Abstract: A method for calibrating electromagnetic radiation-based three-dimensional imaging includes: obtaining (501) a calibration imaging result at least partly on the basis of electromagnetic waves received from a calibration artifact, forming (502) calibration data on the basis of the calibration imaging result and a known thickness profile of the calibration artifact, and correcting (503), with the aid of the calibration data, an imaging result obtained at least partly on the basis of electromagnetic waves received from a sample to be imaged. The calibration artifact includes layers, for example Langmuir-Blodgett films, having pre-determined thicknesses and stacked on each other so as to achieve the pre-determined thickness profile of the calibration artifact. A three-dimensional imaging system configured to carry out the method.
    Type: Application
    Filed: October 29, 2015
    Publication date: September 14, 2017
    Inventors: Edward HÆGGSTROM, Ivan KASSAMAKOV, Anton NOLVI, Tuomo YLITALO, Niklas SANDLER, Tapani VIITALA, Johan NYMAN
  • Publication number: 20110261347
    Abstract: The invention relates to a method for imaging a microfabricated device comprising at least one oscillating component. The method comprises stroboscopically illuminating in an interferometric setup said component in synchronized relationship with the excitation of the device, and detecting interference light in synchronized relationship with the illumination and excitation. According to the invention the component is illuminated at a wavelength band which is at least partly transmissible by the component, and the positions of at least two separate surfaces of the component of interest are determined based on the interference light detected at least at two temporal phases of excitation of the device. The invention provides an efficient method for in-depth characterization of micromechanical structures that provide only one-sided access during operation.
    Type: Application
    Filed: December 9, 2009
    Publication date: October 27, 2011
    Applicant: UNIVERSITY OF HELSINKI
    Inventors: Ivan Kassamakov, Juha Aaltonen, Heimo Saarikko, Edward Haeggstrom, Kalle Hanhijärvi
  • Publication number: 20090026358
    Abstract: A hinge position sensor comprises first and second members connected together to provide a hinge, and an optical fibre or wave-guide connected between the first and second members to provide a communication link between the first and second members. A laser or LED is coupled to the optical fibre or wave-guide to transmit optical signals between the first and second members and the optical signal is received by a photo-detector. The optical fibre or wave-guide is physically distorted by actuation of the hinge such that light escapes from the optical fibre or wave-guide. The optical power level received by the photo-detector is used to determine the position of the hinge.
    Type: Application
    Filed: July 18, 2008
    Publication date: January 29, 2009
    Applicant: NOKIA CORPORATION
    Inventors: Ivan Kassamakov, Pasi Petteri Vihinen, Marcus Stefan Schorpp
  • Patent number: 7415173
    Abstract: A hinge position sensor comprises first and second members connected together to provide a hinge, and an optical fiber or wave-guide connected between the first and second members to provide a communication link between the first and second members. A laser or LED is coupled to the optical fiber or wave-guide to transmit optical signals between the first and second members and the optical signal is received by a photo-detector. The optical fiber or wave-guide is physically distorted by actuation of the hinge such that light escapes from the optical fiber or wave-guide. The optical power level received by the photo-detector is used to determine the position of the hinge.
    Type: Grant
    Filed: June 13, 2006
    Date of Patent: August 19, 2008
    Assignee: Nokia Corporation
    Inventors: Ivan Kassamakov, Pasi Vihinen, Marcus Schorpp
  • Publication number: 20070286556
    Abstract: A hinge position sensor comprises first and second members connected together to provide a hinge, and an optical fibre or wave-guide connected between the first and second members to provide a communication link between the first and second members. A laser or LED is coupled to the optical fibre or wave-guide to transmit optical signals between the first and second members and the optical signal is received by a photo-detector. The optical fibre or wave-guide is physically distorted by actuation of the hinge such that light escapes from the optical fibre or wave-guide. The optical power level received by the photo-detector is used to determine the position of the hinge.
    Type: Application
    Filed: June 13, 2006
    Publication date: December 13, 2007
    Inventors: Ivan Kassamakov, Pasi Vihinen, Marcus Schorpp