Patents by Inventor Ivan Kmecko

Ivan Kmecko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11858806
    Abstract: In described examples, a first metal layer is configured along a periphery of a cavity to be formed between a first substrate and a second substrate. A second metal layer is adjacent the first metal layer. The second metal layer includes a cantilever. The cantilever is configured to deform by bonding the first substrate to the second substrate. The deformed cantilevered is configured to impede contaminants against contacting an element within the cavity.
    Type: Grant
    Filed: August 11, 2021
    Date of Patent: January 2, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: John Charles Ehmke, Ivan Kmecko
  • Publication number: 20210371272
    Abstract: In described examples, a first metal layer is configured along a periphery of a cavity to be formed between a first substrate and a second substrate. A second metal layer is adjacent the first metal layer. The second metal layer includes a cantilever. The cantilever is configured to deform by bonding the first substrate to the second substrate. The deformed cantilevered is configured to impede contaminants against contacting an element within the cavity.
    Type: Application
    Filed: August 11, 2021
    Publication date: December 2, 2021
    Inventors: John Charles Ehmke, Ivan Kmecko
  • Publication number: 20200391993
    Abstract: In described examples, a first metal layer is configured along a periphery of a cavity to be formed between a first substrate and a second substrate. A second metal layer is adjacent the first metal layer. The second metal layer includes a cantilever. The cantilever is configured to deform by bonding the first substrate to the second substrate. The deformed cantilevered is configured to impede contaminants against contacting an element within the cavity.
    Type: Application
    Filed: August 31, 2020
    Publication date: December 17, 2020
    Inventors: John Charles Ehmke, Ivan Kmecko
  • Patent number: 10759658
    Abstract: In described examples, a first metal layer is arranged along a periphery of a cavity to be formed between a first substrate and a second substrate. A second metal layer is arranged adjacent to the first metal layer, where the second metal layer includes a cantilever. The cantilever is arranged to deform in response to forces applied from a contacting structure of the second substrate during bonding of the first substrate to the second substrate. The deformed cantilevered is arranged to impede contaminants against contacting an element within the cavity.
    Type: Grant
    Filed: December 10, 2018
    Date of Patent: September 1, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: John Charles Ehmke, Ivan Kmecko
  • Publication number: 20200180946
    Abstract: In described examples, a first metal layer is arranged along a periphery of a cavity to be formed between a first substrate and a second substrate. A second metal layer is arranged adjacent to the first metal layer, where the second metal layer includes a cantilever. The cantilever is arranged to deform in response to forces applied from a contacting structure of the second substrate during bonding of the first substrate to the second substrate. The deformed cantilevered is arranged to impede contaminants against contacting an element within the cavity.
    Type: Application
    Filed: December 10, 2018
    Publication date: June 11, 2020
    Inventors: John Charles Ehmke, Ivan Kmecko
  • Patent number: 9966194
    Abstract: A MEMs actuator device and method of forming includes arrays of actuator elements. Each actuator element has a moveable top plate and a bottom plate. The top plate includes a central membrane member and a cantilever spring for movement of the central membrane member. The bottom plate consists of two RF signal lines extending under the central membrane member. A MEMs electrostatic actuator device includes a CMOS wafer, a MEMs wafer, and a ball bond assembly. Interconnections are made from a ball bond to an associated through-silicon-via (TSV) that extends through the MEMS wafer. A RF signal path includes a ball bond electrically connected through a TSV and to a horizontal feed bar and from the first horizontal feed bar vertically into each column of the array. A metal bond ring extends between the CMOS wafer and the MEMS wafer. An RF grounding loop is completed from a ground shield overlying the array to the metal bond ring, a TSV and to a ball bond.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: May 8, 2018
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Arun Gupta, William C. McDonald, Adam Fruehling, Ivan Kmecko, Lance Barron, Divyanshu Agrawal, Arthur M. Turner, John C. Ehmke
  • Publication number: 20170098509
    Abstract: A MEMs actuator device and method of forming includes arrays of actuator elements. Each actuator element has a moveable top plate and a bottom plate. The top plate includes a central membrane member and a cantilever spring for movement of the central membrane member. The bottom plate consists of two RF signal lines extending under the central membrane member. A MEMs electrostatic actuator device includes a CMOS wafer, a MEMs wafer, and a ball bond assembly. Interconnections are made from a ball bond to an associated through-silicon-via (TSV) that extends through the MEMS wafer. A RF signal path includes a ball bond electrically connected through a TSV and to a horizontal feed bar and from the first horizontal feed bar vertically into each column of the array. A metal bond ring extends between the CMOS wafer and the MEMS wafer. An RF grounding loop is completed from a ground shield overlying the array to the metal bond ring, a TSV and to a ball bond.
    Type: Application
    Filed: December 20, 2016
    Publication date: April 6, 2017
    Inventors: Arun Gupta, William C. McDonald, Adam Fruehling, Ivan Kmecko, Lance Barron, Divyanshu Agrawal, Arthur M. Turner, John C. Ehmke
  • Patent number: 9573801
    Abstract: A MEMs actuator device and method of forming includes arrays of actuator elements. Each actuator element has a moveable top plate and a bottom plate. The top plate includes a central membrane member and a cantilever spring for movement of the central membrane member. The bottom plate consists of two RF signal lines extending under the central membrane member. A MEMs electrostatic actuator device includes a CMOS wafer, a MEMs wafer, and a ball bond assembly. Interconnections are made from a ball bond to an associated through-silicon-via (TSV) that extends through the MEMS wafer. A RF signal path includes a ball bond electrically connected through a TSV and to a horizontal feed bar and from the first horizontal feed bar vertically into each column of the array. A metal bond ring extends between the CMOS wafer and the MEMS wafer. An RF grounding loop is completed from a ground shield overlying the array to the metal bond ring, a TSV and to a ball bond.
    Type: Grant
    Filed: February 15, 2016
    Date of Patent: February 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Arun Gupta, William C. McDonald, Adam Fruehling, Ivan Kmecko, Lance Barron, Divyanshu Agrawal
  • Publication number: 20160176701
    Abstract: A MEMs actuator device and method of forming includes arrays of actuator elements. Each actuator element has a moveable top plate and a bottom plate. The top plate includes a central membrane member and a cantilever spring for movement of the central membrane member. The bottom plate consists of two RF signal lines extending under the central membrane member. A MEMs electrostatic actuator device includes a CMOS wafer, a MEMs wafer, and a ball bond assembly. Interconnections are made from a ball bond to an associated through-silicon-via (TSV) that extends through the MEMS wafer. A RF signal path includes a ball bond electrically connected through a TSV and to a horizontal feed bar and from the first horizontal feed bar vertically into each column of the array. A metal bond ring extends between the CMOS wafer and the MEMS wafer. An RF grounding loop is completed from a ground shield overlying the array to the metal bond ring, a TSV and to a ball bond.
    Type: Application
    Filed: February 15, 2016
    Publication date: June 23, 2016
    Inventors: Arun Gupta, William C. McDonald, Adam Fruehling, Ivan Kmecko, Lance Barron, Divyanshu Agrawal, Arthur M. Turner, John C. Ehmke, James C. Baker
  • Patent number: 7480089
    Abstract: The disclosed embodiments combine an electrothermal actuator system with an electrostatic attraction system, in order to orient bistable micromirrors in digital micromirror devices (DMDs). The micromirror, pivotally supported, can switch between two orientations. While typical DMD systems use electrostatic electrodes to orient the micromirror, stiction forces can restrict micromirror motion, affecting optical performance. The disclosed embodiments use an electrothermal actuation system to mechanically assist the electrodes, overcoming stiction without the need for a high-voltage reset pulse.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: January 20, 2009
    Assignee: Texas Instruments Incorporated
    Inventor: Ivan Kmecko
  • Patent number: 7402458
    Abstract: An improved window frame and window piece for a micromirror assembly is disclosed herein. The window frame includes a stress-relieving contour positioned in the middle of the frame that can absorb the mechanical stresses applied to the window frame from the ceramic base and from the window piece. The window frame may be comprised of a single piece of sheet metal that has been stamped to include a stress-relieving contour. The stress-relieving contour may be comprised of a variety of shapes, including a “U” shape, an inverted “U” shape, a curved step shape, or other combinations thereof.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: July 22, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Bradley Morgan Haskett, John Patrick O'Connor, Steven E. Smith, Mark Myron Miller, Ivan Kmecko, Jwei Wien Liu, Edward Carl Fisher, Frank O. Armstrong, Daniel C. Estabrook, Jeffrey E. Faris
  • Publication number: 20070247705
    Abstract: The disclosed embodiments combine an electrothermal actuator system with an electrostatic attraction system, in order to orient bistable micromirrors in digital micromirror devices (DMDs). The micromirror, pivotally supported, can switch between two orientations. While typical DMD systems use electrostatic electrodes to orient the micromirror, stiction forces can restrict micromirror motion, affecting optical performance. The disclosed embodiments use an electrothermal actuation system to mechanically assist the electrodes, overcoming stiction without the need for a high-voltage reset pulse.
    Type: Application
    Filed: April 25, 2006
    Publication date: October 25, 2007
    Applicant: Texas Instruments Incorporated
    Inventor: Ivan Kmecko
  • Publication number: 20050185252
    Abstract: An improved window frame and window piece for a micromirror assembly is disclosed herein. The window frame includes a stress-relieving contour positioned in the middle of the frame that can absorb the mechanical stresses applied to the window frame from the ceramic base and from the window piece. The window frame may be comprised of a single piece of sheet metal that has been stamped to include a stress-relieving contour. The stress-relieving contour may be comprised of a variety of shapes, including a “U” shape, an inverted “U” shape, a curved step shape, or other combinations thereof.
    Type: Application
    Filed: April 28, 2005
    Publication date: August 25, 2005
    Inventors: Bradley Haskett, John O'Connor, Steven Smith, Mark Miller, Ivan Kmecko, Jwei Liu, Edward Fisher, Frank Armstrong, Daniel Estabrook, Jeffrey Faris
  • Patent number: 6894853
    Abstract: An improved window frame and window piece for a micromirror assembly is disclosed herein. The window frame includes a stress-relieving contour positioned in the middle of the frame that can absorb the mechanical stresses applied to the window frame from the ceramic base and from the window piece. The window frame may be comprised of a single piece of sheet metal that has been stamped to include a stress-relieving contour. The stress-relieving contour may be comprised of a variety of shapes, including a “U” shape, an inverted “U” shape, a curved step shape, or other combinations thereof.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: May 17, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Bradley Morgan Haskett, John Patrick O'Connor, Steven E. Smith, Mark Myron Miller, Ivan Kmecko, Jwei Wien Liu, Edward Carl Fisher, Frank O. Armstrong, Daniel C. Estabrook, Jeffrey E. Farris
  • Publication number: 20030210452
    Abstract: An improved window frame and window piece for a micromirror assembly is disclosed herein. The window frame includes a stress-relieving contour positioned in the middle of the frame that can absorb the mechanical stresses applied to the window frame from the ceramic base and from the window piece. The window frame may be comprised of a single piece of sheet metal that has been stamped to include a stress-relieving contour. The stress-relieving contour may be comprised of a variety of shapes, including a “U” shape, an inverted “U” shape, a curved step shape, or other combinations thereof.
    Type: Application
    Filed: May 10, 2002
    Publication date: November 13, 2003
    Applicant: Texas Instruments, Inc.
    Inventors: Bradley Morgan Haskett, John Patrick O'Connor, Steven E. Smith, Mark Myron Miller, Ivan Kmecko, Jwei Wien Liu, Edward Carl Fisher, Frank O. Armstrong, Daniel C. Estabrook, Jeffrey E. Farris