Patents by Inventor Ivan L. Johnston

Ivan L. Johnston has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230314621
    Abstract: Disclosed is a technique that can provide one or more countermeasures against spoofers. An antenna, movable in space, is used to receive space vehicle (SV) signals that appear to be associated with a plurality of space vehicles of a global navigation satellite system (GNSS). SV signals are identified that have similar signal power and/or phase signatures that respectively appear to be associated with at least a first space vehicle and a second space vehicle of the GNSS. An existence of a spoofer is identified based at least in part on the identification of SV signals that have similar signal power and/or phase signatures that respectively appear to be associated with at least the first space vehicle and the second space vehicle of the GNSS.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Ivan L. Johnston, Gilberto Isaac Sada, Steven B. Alexander, Randall Paul Jaffe, David Christopher Post, Nathan Douglas Haveman
  • Patent number: 11733389
    Abstract: Disclosed is a technique that can provide one or more countermeasures against spoofers. A beamformer can control an antenna pattern of a CRPA to generate a survey beam. The survey beam is swept across space to determine a characteristic signature based on carrier-to-noise ratios (C/No) for particular space vehicle signals. Matching C/No signatures can be used to identify the existence of spoofers and invoke a countermeasure, such as nulling.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: August 22, 2023
    Assignee: L3Harris Interstate Electronics Corporation
    Inventors: Ivan L. Johnston, Gilberto Isaac Sada, Steven B. Alexander
  • Patent number: 11194053
    Abstract: Disclosed is a technique that can provide one or more countermeasures against spoofers. A beamformer can control an antenna pattern of a CRPA to generate a survey beam. The survey beam is swept across space to determine a characteristic signature based on carrier-to-noise ratios (C/No) for particular space vehicle signals. Matching C/No signatures can be used to identify the existence of spoofers and invoke a countermeasure, such as nulling.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: December 7, 2021
    Assignee: Interstate Electronics Corporation
    Inventors: Ivan L. Johnston, Gilberto Isaac Sada, Steven B. Alexander
  • Patent number: 10545246
    Abstract: Disclosed is a technique that can provide one or more countermeasures against spoofers. A beamformer can control an antenna pattern of a CRPA to generate a survey beam. The survey beam is swept across space to determine a characteristic signature based on carrier-to-noise ratios (C/No) for particular space vehicle signals. Matching C/No signatures can be used to identify the existence of spoofers and invoke a countermeasure, such as nulling.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: January 28, 2020
    Assignee: Interstate Electronics Corporation
    Inventors: Ivan L. Johnston, Gilberto Isaac Sada, Steven B. Alexander
  • Patent number: 7471744
    Abstract: A system for efficiently filtering interfering signals in a front end of a GPS receiver is disclosed. Such interfering signals can emanate from friendly, as well as unfriendly, sources. One embodiment includes a GPS receiver with a space-time adaptive processing (STAP) filter. At least a portion of the interfering signals are removed by applying weights to the inputs. One embodiment adaptively calculates and applies the weights by Fourier Transform convolution and Fourier Transform correlation. The Fourier Transform can be computed via a Fast Fourier Transform (FFT). This approach advantageously reduces computational complexity to practical levels. Another embodiment utilizes redundancy in the covariance matrix to further reduce computational complexity. In another embodiment, an improved FFT and an improved Inverse FFT further reduce computational complexity and improve speed.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: December 30, 2008
    Assignee: L-3 Communications Corporation
    Inventors: Robert J. Van Wechel, Ivan L. Johnston
  • Patent number: 7292663
    Abstract: A system for efficiently filtering interfering signals in a front end of a GPS receiver is disclosed. Such interfering signals can emanate from friendly, as well as unfriendly, sources. One embodiment includes a GPS receiver with a space-time adaptive processing (STAP) filter. At least a portion of the interfering signals are removed by applying weights to the inputs. One embodiment adaptively calculates and applies the weights by Fourier Transform convolution and Fourier Transform correlation. The Fourier Transform can be computed via a Fast Fourier Transform (FFT). This approach advantageously reduces computational complexity to practical levels. Another embodiment utilizes redundancy in the covariance matrix to further reduce computational complexity. In another embodiment, an improved FFT and an improved Inverse FFT further reduce computational complexity and improve speed.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: November 6, 2007
    Assignee: L-3 Communications Corporation
    Inventors: Robert J. Van Wechel, Ivan L. Johnston
  • Patent number: 7197095
    Abstract: A system for efficiently filtering interfering signals in a front end of a GPS receiver is disclosed. Such interfering signals can emanate from friendly, as well as unfriendly, sources. One embodiment includes a GPS receiver with a space-time adaptive processing (STAP) filter. At least a portion of the interfering signals are removed by applying weights to the inputs. One embodiment adaptively calculates and applies the weights by Fourier Transform convolution and Fourier Transform correlation. The Fourier Transform can be computed via a Fast Fourier Transform (FFT). This approach advantageously reduces computational complexity to practical levels. Another embodiment utilizes redundancy in the covariance matrix to further reduce computational complexity. In another embodiment, an improved FFT and an improved Inverse FFT further reduce computational complexity and improve speed.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: March 27, 2007
    Assignee: Interstate Electronics Corporation
    Inventors: Robert J. Van Wechel, Ivan L. Johnston
  • Patent number: 6952460
    Abstract: A system for efficiently filtering interfering signals in a front end of a GPS receiver is disclosed. Such interfering signals can emanate from friendly, as well as unfriendly, sources. One embodiment includes a GPS receiver with a space-time adaptive processing (STAP) filter. At least a portion of the interfering signals are removed by applying weights to the inputs. One embodiment adaptively calculates and applies the weights by Fourier Transform convolution and Fourier Transform correlation. The Fourier Transform can be computed via a Fast Fourier Transform (FFT). This approach advantageously reduces computational complexity to practical levels. Another embodiment utilizes redundancy in the covariance matrix to further reduce computational complexity. In another embodiment, an improved FFT and an improved Inverse FFT further reduce computational complexity and improve speed.
    Type: Grant
    Filed: September 26, 2002
    Date of Patent: October 4, 2005
    Assignee: L-3 Communications Corporation
    Inventors: Robert J. Van Wechel, Ivan L. Johnston