Patents by Inventor Ivan Li-Chuen YEOH

Ivan Li-Chuen YEOH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240142224
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Application
    Filed: December 29, 2023
    Publication date: May 2, 2024
    Inventors: Ivan Li Chuen YEOH, Lionel Ernest EDWIN, Samuel A. MILLER
  • Publication number: 20240126086
    Abstract: Systems and methods are disclosed for operating a head-mounted display system based on user perceptibility. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes by presenting the content with different amounts of wavefront divergence. Some embodiments include obtaining an image captured by an imaging device of the display system. Whether a threshold measure or more of motion blur is determined to be exhibited in one or more regions of the image. Based on a determination that the threshold measure or more of motion blur is exhibited in one or more regions of the image, one or more operating parameters of the wearable display are adjusted. Example operating parameter adjustments comprise adjusting the depth plane on which content is presented (e.g., by switching from a first depth plane to a second depth plane), adjusting a rendering quality, and adjusting power characteristics of the system.
    Type: Application
    Filed: December 22, 2023
    Publication date: April 18, 2024
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Samuel A. Miller, Edwin Joseph Selker, Adam Charles Carlson, Bjorn Nicolaas Servatius Vlaskamp, Paul M. Greco
  • Publication number: 20240108217
    Abstract: A display system can include a head-mounted display configured to project light to an eye of a user to display virtual image content at different amounts of divergence and collimation. The display system can include an inward-facing imaging system images the user's eye and processing electronics that are in communication with the inward-facing imaging system and that are configured to obtain an estimate of a center of rotation of the user's eye. The display system may render virtual image content with a render camera positioned at the determined position of the center of rotation of said eye.
    Type: Application
    Filed: December 7, 2023
    Publication date: April 4, 2024
    Inventors: Samuel A. MILLER, Lomesh AGARWAL, Lionel Ernest EDWIN, Ivan Li Chuen YEOH, Daniel FARMER, Sergey Fyodorovich PROKUSHKIN, Yonatan MUNK, Edwin Joseph SELKER, Bradley Vincent STUART, Jeffrey Scott SOMMERS
  • Publication number: 20240094528
    Abstract: A wearable device may include a head-mounted display (HMD) for rendering a three-dimensional (3D) virtual object which appears to be located in an ambient environment of a user of the display. The relative positions of the HMD and one or more eyes of the user may not be in desired positions to receive, or register, image information outputted by the HMD. For example, the HMD-to-eye alignment may vary for different users and may change over time (e.g., as a user moves around and/or the HMD slips or is otherwise displaced). The wearable device may determine a relative position or alignment between the HMD and the user's eyes. Based on the relative positions, the wearable device may determine if it is properly fitted to the user, may provide feedback on the quality of the fit to the user, and may take actions to reduce or minimize effects of any misalignment.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Lionel Ernest EDWIN, Zachary C. NIENSTEDT, Ivan Li Chuen YEOH, Samuel A. MILLER, Yan XU, Jordan Alexander CAZAMIAS
  • Patent number: 11935206
    Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
    Type: Grant
    Filed: April 5, 2023
    Date of Patent: March 19, 2024
    Assignee: Magic Leap, Inc
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch
  • Publication number: 20240077741
    Abstract: A dynamically actuable lens includes a substrate having a surface and a metasurface diffractive optical element (DOE) formed on the surface. The metasurface DOE includes a plurality of raised portions and defines a plurality of recesses between adjacent raised portions. The dynamically actuable lens also includes a movable cover overlying the metasurface DOE and comprising a hydrophilic material, a quantity of a fluid disposed on the movable cover, and a drive mechanism coupled to the movable cover. The drive mechanism is configured to move the movable cover toward the metasurface DOE to displace a portion of the quantity of the fluid into the plurality of recesses, thereby rendering the metasurface DOE in an “off” state, and move the movable cover away from the metasurface DOE, causing the portion of the quantity of the fluid retracting from the plurality of recesses, thereby rendering the metasurface DOE in an “on” state.
    Type: Application
    Filed: November 8, 2023
    Publication date: March 7, 2024
    Applicant: Magic Leap, Inc.
    Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin
  • Publication number: 20240068867
    Abstract: Wearable spectroscopy systems and methods for identifying one or more characteristics of a target object are described. Spectroscopy systems may include a light source configured to emit light in an irradiated field of view and an electromagnetic radiation detector configured to receive reflected light from a target object irradiated by the light source. One or more processors of the systems may identify a characteristic of the target object based on a determined level of light absorption by the target object. Some systems and methods may include one or more corrections for scattered and/or ambient light such as applying an ambient light correction, passing the reflected light through an anti-scatter grid, or using a time-dependent variation in the emitted light.
    Type: Application
    Filed: November 9, 2023
    Publication date: February 29, 2024
    Inventors: Adrian Kaehler, Christopher M. Harrises, Eric Baerenrodt, Mark Baerenrodt, Natasja U. Robaina, Nicole Elizabeth Samec, Tammy Sherri Powers, Ivan Li Chuen Yeoh, Adam Carl Wright
  • Patent number: 11898836
    Abstract: Examples of a light field metrology system for use with a display are disclosed. The light field metrology may capture images of a projected light field, and determine focus depths (or lateral focus positions) for various regions of the light field using the captured images. The determined focus depths (or lateral positions) may then be compared with intended focus depths (or lateral positions), to quantify the imperfections of the display. Based on the measured imperfections, an appropriate error correction may be performed on the light field to correct for the measured imperfections. The display can be an optical display element in a head mounted display, for example, an optical display element capable of generating multiple depth planes or a light field display.
    Type: Grant
    Filed: November 28, 2022
    Date of Patent: February 13, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin, Samuel A. Miller
  • Patent number: 11892636
    Abstract: Systems and methods are disclosed for operating a head-mounted display system based on user perceptibility. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes by presenting the content with different amounts of wavefront divergence. Some embodiments include obtaining an image captured by an imaging device of the display system. Whether a threshold measure or more of motion blur is determined to be exhibited in one or more regions of the image. Based on a determination that the threshold measure or more of motion blur is exhibited in one or more regions of the image, one or more operating parameters of the wearable display are adjusted. Example operating parameter adjustments comprise adjusting the depth plane on which content is presented (e.g., by switching from a first depth plane to a second depth plane), adjusting a rendering quality, and adjusting power characteristics of the system.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: February 6, 2024
    Assignee: MAGIC LEAP, INC.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Samuel A. Miller, Edwin Joseph Selker, Adam Charles Carlson, Bjorn Nicolaas Servatius Vlaskamp, Paul M. Greco
  • Patent number: 11883104
    Abstract: A display system can include a head-mounted display configured to project light to an eye of a user to display virtual image content at different amounts of divergence and collimation. The display system can include an inward-facing imaging system images the user's eye and processing electronics that are in communication with the inward-facing imaging system and that are configured to obtain an estimate of a center of rotation of the user's eye. The display system may render virtual image content with a render camera positioned at the determined position of the center of rotation of said eye.
    Type: Grant
    Filed: September 2, 2021
    Date of Patent: January 30, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Samuel A. Miller, Lomesh Agarwal, Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Daniel Farmer, Sergey Fyodorovich Prokushkin, Yonatan Munk, Edwin Joseph Selker, Bradley Vincent Stuart, Jeffrey Scott Sommers
  • Patent number: 11880033
    Abstract: A wearable device may include a head-mounted display (HMD) for rendering a three-dimensional (3D) virtual object which appears to be located in an ambient environment of a user of the display. The relative positions of the HMD and one or more eyes of the user may not be in desired positions to receive, or register, image information outputted by the HMD. For example, the HMD-to-eye alignment may vary for different users and change over time (e.g., as a given user moves around or as the HMD slips or otherwise becomes displaced). The wearable device may determine a relative position or alignment between the HMD and the user's eyes. Based on the relative positions, the wearable device may determine if it is properly fitted to the user, may provide feedback on the quality of the fit to the user, and may take actions to reduce or minimize effects of any misalignment.
    Type: Grant
    Filed: March 28, 2022
    Date of Patent: January 23, 2024
    Assignee: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Zachary C. Nienstedt, Ivan Li Chuen Yeoh, Samuel A. Miller, Yan Xu, Jordan Alexander Cazamias
  • Patent number: 11852841
    Abstract: A dynamically actuable diffractive optical element (DOE) includes a substrate and a diffraction grating disposed on a first region of a surface of the substrate. The DOE further includes a quantity of a fluid disposed on a second region of the surface of the substrate, a fluid displacer disposed adjacent the second region of the surface of the substrate, and a drive signal source configured to send an electric signal to the fluid displacer. The fluid displacer is configured to, upon receiving the electric signal in a first state, causing a portion of the quantity of the fluid to be displaced from the second region of the surface into grooves of the diffraction grating, and upon receiving the electric signal in a second state, causing the portion of the quantity of the fluid to retract from the grooves of the diffraction grating to the second region of the surface.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: December 26, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Ivan Li Chuen Yeoh, Lionel Ernest Edwin
  • Patent number: 11852530
    Abstract: Wearable spectroscopy systems and methods for identifying one or more characteristics of a target object are described. Spectroscopy systems may include a light source configured to emit light in an irradiated field of view and an electromagnetic radiation detector configured to receive reflected light from a target object irradiated by the light source. One or more processors of the systems may identify a characteristic of the target object based on a determined level of light absorption by the target object. Some systems and methods may include one or more corrections for scattered and/or ambient light such as applying an ambient light correction, passing the reflected light through an anti-scatter grid, or using a time-dependent variation in the emitted light.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: December 26, 2023
    Inventors: Adrian Kaehler, Christopher M. Harrises, Eric Baerenrodt, Mark Baerenrodt, Natasja U. Robaina, Nicole Elizabeth Samec, Tammy Sherri Powers, Ivan Li Chuen Yeoh, Adam Carl Wright
  • Publication number: 20230400693
    Abstract: An augmented reality head mounted display system an eyepiece having a transparent emissive display. The eyepiece and transparent emissive display are positioned in an optical path of a user's eye in order to transmit light into the user's eye to form images. Due to the transparent nature of the display, the user can see an outside environment through the transparent emissive display. The transmissive emissive display comprising a plurality of emitters configured to emit light into the eye of the user.
    Type: Application
    Filed: June 28, 2023
    Publication date: December 14, 2023
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen YEOH
  • Publication number: 20230280594
    Abstract: A method and system for increasing dynamic digitized wavefront resolution, i.e., the density of output beamlets, can include receiving a single collimated source light beam and producing multiple output beamlets spatially offset when out-coupled from a waveguide. The multiple output beamlets can be obtained by offsetting and replicating a collimated source light beam. Alternatively, the multiple output beamlets can be obtained by using a collimated incoming source light beam having multiple input beams with different wavelengths in the vicinity of the nominal wavelength of a particular color. The collimated incoming source light beam can be in-coupled into the eyepiece designed for the nominal wavelength. The input beams with multiple wavelengths take different paths when they undergo total internal reflection in the waveguide, which produces multiple output beamlets.
    Type: Application
    Filed: May 11, 2023
    Publication date: September 7, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Brian T. Schowengerdt, Kevin Richard Curtis, William Hudson Welch, Pierre St. Hilaire, Hui-Chuan Cheng
  • Patent number: 11733516
    Abstract: An augmented reality head mounted display system an eyepiece having a transparent emissive display. The eyepiece and transparent emissive display are positioned in an optical path of a user's eye in order to transmit light into the user's eye to form images. Due to the transparent nature of the display, the user can see an outside environment through the transparent emissive display. The transmissive emissive display comprising a plurality of emitters configured to emit light into the eye of the user.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: August 22, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh
  • Publication number: 20230251492
    Abstract: Methods and systems for depth-based foveated rendering in the display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. Some embodiments include monitoring eye orientations of a user of a display system based on detected sensor information. A fixation point is determined based on the eye orientations, the fixation point representing a three-dimensional location with respect to a field of view. Location information of virtual objects to present is obtained, with the location information indicating three-dimensional positions of the virtual objects. Resolutions of at least one virtual object is adjusted based on a proximity of the at least one virtual object to the fixation point. The virtual objects are presented to a user by display system with the at least one virtual object being rendered according to the adjusted resolution.
    Type: Application
    Filed: April 7, 2023
    Publication date: August 10, 2023
    Inventors: Ivan Li Chuen YEOH, Lionel Ernest EDWIN, Nicole Elizabeth SAMEC, Nastasja U. ROBAINA, Vaibhav MATHUR, Timothy Mark DALRYMPLE, Jason SCHAEFER, Clinton CARLISLE, Hui-Chuan CHENG, Chulwoo OH, Philip PREMYSLER, Xiaoyang ZHANG, Adam C. CARLSON
  • Publication number: 20230237749
    Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
    Type: Application
    Filed: April 5, 2023
    Publication date: July 27, 2023
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. SCHOWENGERDT, Mathew D. WATSON, David TINCH, Ivan Li Chuen YEOH, John Graham MACNAMARA, Lionel Ernest EDWIN, Michael Anthony KLUG, William Hudson WELCH
  • Patent number: 11686944
    Abstract: A method and system for increasing dynamic digitized wavefront resolution, i.e., the density of output beamlets, can include receiving a single collimated source light beam and producing multiple output beamlets spatially offset when out-coupled from a waveguide. The multiple output beamlets can be obtained by offsetting and replicating a collimated source light beam. Alternatively, the multiple output beamlets can be obtained by using a collimated incoming source light beam having multiple input beams with different wavelengths in the vicinity of the nominal wavelength of a particular color. The collimated incoming source light beam can be in-coupled into the eyepiece designed for the nominal wavelength. The input beams with multiple wavelengths take different paths when they undergo total internal reflection in the waveguide, which produces multiple output beamlets.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: June 27, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Lionel Ernest Edwin, Ivan Li Chuen Yeoh, Brian T. Schowengerdt, Kevin Richard Curtis, William Hudson Welch, Pierre St. Hilaire, Hui-Chuan Cheng
  • Patent number: 11651566
    Abstract: A virtual image generation system comprises a planar optical waveguide having opposing first and second faces, an in-coupling (IC) element configured for optically coupling a collimated light beam from an image projection assembly into the planar optical waveguide as an in-coupled light beam, a first orthogonal pupil expansion (OPE) element associated with the first face of the planar optical waveguide for splitting the in-coupled light beam into a first set of orthogonal light beamlets, a second orthogonal pupil expansion (OPE) element associated with the second face of the planar optical waveguide for splitting the in-coupled light beam into a second set of orthogonal light beamlets, and an exit pupil expansion (EPE) element associated with the planar optical waveguide for splitting the first and second sets of orthogonal light beamlets into an array of out-coupled light beamlets that exit the planar optical waveguide.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: May 16, 2023
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Mathew D. Watson, David Tinch, Ivan Li Chuen Yeoh, John Graham Macnamara, Lionel Ernest Edwin, Michael Anthony Klug, William Hudson Welch