Patents by Inventor Ivan LOVAS

Ivan LOVAS has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11296493
    Abstract: An example apparatus is for use with an electronic circuit breaker having a plurality of current paths connected between a connection terminal to a power source and a load terminal. The apparatus includes power access circuitry and control circuitry. The power access circuitry monitors circuit access of power via the power source by modulating use of the plurality of current paths of the electronic circuit breaker while assessing actual usage of the power source via a power-related parameter relative to expected usage of the power source. The control circuitry responds to the assessment by generating a signal indicative of a diagnostic result associated with operation of the electronic circuit breaker.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: April 5, 2022
    Assignee: NXP USA, Inc.
    Inventor: Ivan Lovas
  • Publication number: 20200144811
    Abstract: An example apparatus is for use with an electronic circuit breaker having a plurality of current paths connected between a connection terminal to a power source and a load terminal. The apparatus includes power access circuitry and control circuitry. The power access circuitry monitors circuit access of power via the power source by modulating use of the plurality of current paths of the electronic circuit breaker while assessing actual usage of the power source via a power-related parameter relative to expected usage of the power source. The control circuitry responds to the assessment by generating a signal indicative of a diagnostic result associated with operation of the electronic circuit breaker.
    Type: Application
    Filed: November 5, 2018
    Publication date: May 7, 2020
    Inventor: Ivan Lovas
  • Patent number: 10581282
    Abstract: Foreign object detection (FOD) is provided for wireless energy transfer systems. A transmitter receives an input voltage, converts it to an output current, supplies the output current to a transmit coil, and samples a first set of analog signals to generate a first set of digital values. A receiver converts a current induced in a receive coil by energy transferred from the transmit coil into an output voltage, samples a second set of analog signals to generate a second set of digital values, and communicates the second set of digital values to the transmitter. The transmitter generates a FOD signal based upon the first and second sets of digital values that indicates detection or non-detection of a foreign object within the energy transfer. In further embodiments, a comparison of the detected power loss or efficiency to expected power loss or efficiency is used to generate the FOD signal.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: March 3, 2020
    Assignee: NXP USA, Inc.
    Inventors: Ivan Lovas, Zbynek Mynar, Jozef Cicka
  • Publication number: 20190068001
    Abstract: Foreign object detection (FOD) is provided for wireless energy transfer systems. A transmitter receives an input voltage, converts it to an output current, supplies the output current to a transmit coil, and samples a first set of analog signals to generate a first set of digital values. A receiver converts a current induced in a receive coil by energy transferred from the transmit coil into an output voltage, samples a second set of analog signals to generate a second set of digital values, and communicates the second set of digital values to the transmitter. The transmitter generates a FOD signal based upon the first and second sets of digital values that indicates detection or non-detection of a foreign object within the energy transfer. In further embodiments, a comparison of the detected power loss or efficiency to expected power loss or efficiency is used to generate the FOD signal.
    Type: Application
    Filed: August 30, 2017
    Publication date: February 28, 2019
    Inventors: Ivan Lovas, Zbynek Mynar, Jozef Cicka
  • Patent number: 9729099
    Abstract: A method and apparatus are provided for controlling a sensorless alternating current induction motor (ACIM) having a rotor and a stator comprising a plurality of stator windings by applying a plurality of phase shifted voltages to the plurality of stator windings in the ACIM such that two energized stator windings are connected to first and second phase shifted voltages to cause rotation of the rotor relative to the stator while a third unconnected stator winding is floating so that a DC bus current and an inducted voltage can be measured from the ACIM and used to compute an estimated rotor speed.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: August 8, 2017
    Assignee: NXP USA, Inc.
    Inventors: Ivan Lovas, Pavel Sustek, Petr Staszko
  • Patent number: 9667184
    Abstract: A device for determining a rotor position in a polyphase electric motor having a first phase, a second phase and a third phase. A power control unit applies a first voltage on the first phase, and a second voltage on the second phase, the first voltage and the second voltage being periodic signals of opposite polarity, alternating between a first part and a second part of the alternating period, such as square waves. A sample unit samples a third voltage on the third phase for acquiring a first sample at a first instant in the first part and a second sample at a second instant in the second part, and a difference value between the first sample and the second sample. The difference value represents a mutual inductance between the stator coils due to the rotor position. A determination unit determines the rotor position based on the difference value.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: May 30, 2017
    Assignee: NXP USA, Inc.
    Inventors: Ivan Lovas, Pavel Grasblum, Libor Prokop
  • Patent number: 9628005
    Abstract: A device for determining a rotor position in a polyphase electric motor has a power control unit for applying drive voltages according to a pulse width modulation scheme so as to synchronously drive the motor. A measurement unit is arranged for measuring a voltage value on a respective phase by determining a zero-crossing interval where the phase current is around zero, disconnecting the phase from the respective drive voltage during the zero-crossing interval, and measuring the voltage value when the drive voltage of a first other phase is the supply voltage and the drive voltage of a second other phase is the zero voltage. A position unit is arranged for determining the rotor position based on the voltage value.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: April 18, 2017
    Assignee: NXP USA, INC.
    Inventors: Ivan Lovas, Viktor Bobek
  • Publication number: 20160056741
    Abstract: A device for determining a rotor position in a polyphase electric motor has a power control unit for applying drive voltages according to a pulse width modulation scheme so as to synchronously drive the motor. A measurement unit is arranged for measuring a voltage value on a respective phase by determining a zero-crossing interval where the phase current is around zero, disconnecting the phase from the respective drive voltage during the zero-crossing interval, and measuring the voltage value when the drive voltage of a first other phase is the supply voltage and the drive voltage of a second other phase is the zero voltage. A position unit is arranged for determining the rotor position based on the voltage value.
    Type: Application
    Filed: March 28, 2013
    Publication date: February 25, 2016
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Ivan LOVAS, Viktor BOBEK
  • Publication number: 20150340980
    Abstract: A device for determining a rotor position in a polyphase electric motor having a first phase, a second phase and a third phase. A power control unit applies a first voltage on the first phase, and a second voltage on the second phase, the first voltage and the second voltage being periodic signals of opposite polarity, alternating between a first part and a second part of the alternating period, such as square waves. A sample unit samples a third voltage on the third phase for acquiring a first sample at a first instant in the first part and a second sample at a second instant in the second part, and a difference value between the first sample and the second sample. The difference value represents a mutual inductance between the stator coils due to the rotor position. A determination unit determines the rotor position based on the difference value.
    Type: Application
    Filed: January 9, 2013
    Publication date: November 26, 2015
    Applicant: Freescale Semiconductor, Inc.
    Inventors: Ivan LOVAS, Pavel GRASBLUM, Libor PROKOP