Patents by Inventor Ivan Osorio

Ivan Osorio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140378851
    Abstract: Methods, systems, and apparatus for quantifying the quality of a fiducial time marker for a candidate heart beat, quantifying the quality of a candidate heart beat, or determining a time of beat sequence of the patient's heart. A fiducial time marker is obtained for a candidate heart beat. A quality index of said candidate heart beat is set to a first value. The candidate heart beat is tested with at least one beat validity test. At least a second value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least one beat validity test. The candidate heart beat is tested with at least a second heart beat validity test. At least a third value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least second heart beat validity test.
    Type: Application
    Filed: September 8, 2014
    Publication date: December 25, 2014
    Inventors: Mark G. Frei, Ivan Osorio
  • Patent number: 8888702
    Abstract: Methods, systems, and apparatus for detecting an epileptic event, for example, a seizure in a patient using a medical device. The determination is performed by providing an autonomic signal indicative of the patient's autonomic activity; providing a neurologic signal indicative of the patient's neurological activity; and detecting an epileptic event based upon the autonomic signal and the neurologic signal.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: November 18, 2014
    Assignee: Flint Hills Scientific, LLC
    Inventor: Ivan Osorio
  • Patent number: 8880167
    Abstract: We disclose methods and medical device systems for selectively recruiting a nerve fiber type within a cranial nerve, a peripheral nerve or a spinal root. Such a method may comprise applying a first pressure, a heating, and/or a cooling to a second location of the nerve, the pressure, heating, or cooling sufficient to substantially block at least one of activation or conduction in at least one fiber population through the second location of the nerve for a blocking time period; and applying an electrical signal to a first location during the blocking time period to prevent or treat an undesirable brain state change.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: November 4, 2014
    Inventor: Ivan Osorio
  • Publication number: 20140309614
    Abstract: Apparatus and method detect a detection cluster that is associated with a neurological event, such as a seizure, of a nervous system disorder and update therapy parameters that are associated with a treatment therapy. The occurrence of the detection cluster is detected when the maximal ratio exceeds an intensity threshold. If the maximal ratio drops below the intensity threshold for a time interval that is less than a time threshold and subsequently rises above the intensity threshold, the subsequent time duration is considered as being associated with the detection cluster rather than being associated with a different detection cluster. Consequently, treatment of the nervous system disorder during the corresponding time period is in accordance with one detection cluster. Treatment therapy may be provided by providing electrical stimulation, drug infusion or a combination.
    Type: Application
    Filed: April 25, 2014
    Publication date: October 16, 2014
    Applicant: Medtronic, Inc.
    Inventors: Mark G. Frei, Ivan Osorio, Nina M. Graves, Scott F. Schaffner, Mark T. Rise, Jonathon E. Giftakis, David L. Carlson
  • Patent number: 8852100
    Abstract: A method, comprising receiving at least one of a signal relating to a first cardiac activity and a signal relating to a first body movement from a patient; triggering at least one of a test of the patient's responsiveness, awareness, a second cardiac activity, a second body movement, a spectral analysis test of the second cardiac activity, and a spectral analysis test of the second body movement, based on at least one of the signal relating to the first cardiac activity and the signal relating to the first body movement; determining an occurrence of an epileptic event based at least in part on said one or more triggered tests; and performing a further action in response to said determination of said occurrence of said epileptic event. Further methods allow classification of epileptic events. Apparatus and systems capable of implementing the method.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: October 7, 2014
    Assignee: Flint Hills Scientific, LLC
    Inventor: Ivan Osorio
  • Patent number: 8849409
    Abstract: A method of treating a medical condition in a patient using an implantable medical device, comprising providing an electrical signal generator; providing at least a first electrode operatively coupled to the electrical signal generator and to a vagus nerve of the patient; sensing cardiac data of the patient; determining at least a first cardiac parameter based upon said cardiac data; setting at least a first value; declaring an unstable brain state of a patient from said at least a first cardiac parameter and said at least a first value; and adjusting the at least a first value. Also, a computer readable program storage device encoded with instructions that, when executed by a computer, performs the method. In addition, the implantable medical device used in the method.
    Type: Grant
    Filed: March 3, 2013
    Date of Patent: September 30, 2014
    Assignees: Cyberonics, Inc., Flint Hills Scientific, LLC
    Inventors: John C. Colborn, Mark G. Frei, Ivan Osorio
  • Publication number: 20140276353
    Abstract: We report a method of treating an epileptic seizure in a patient, comprising: detecting said epileptic seizure, based on body data from said patient; and reducing a flow of blood to a brain of said patient in response to said detected seizure; wherein said reducing is effected by: increasing the parasympathetic input to said patient's heart, such as by electrically stimulating a parasympathetic nervous structure, applying cooling energy to a sympathetic nervous structure, or administering a cholinergic or a sympatho-blocking agent to said patient. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140275830
    Abstract: In some embodiments, the present disclosure relates to a medical device system, comprising: a medical device capable of receiving a plurality of body signal types, wherein the body signal types comprise an electrical body signal, a temperature body signal, or a pressure body signal; and an electrode operatively coupled to the medical device, the electrode capable of sensing a plurality of body signal types, wherein the body signal types comprise an electrical body signal, a temperature body signal, or a pressure body signal; the electrode comprising: an electrical sensor; a temperature sensor; and a pressure sensor.
    Type: Application
    Filed: January 6, 2014
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventors: Ivan Osorio, Nachappa Gopalsami, Apostolos C. Raptis, Stanislav Kulikov
  • Publication number: 20140276551
    Abstract: We report a method of treating an epileptic seizure in a patient, comprising: detecting said epileptic seizure, based on body data from said patient; and reducing a flow of blood to a brain of said patient in response to said detected seizure; wherein said reducing is effected by at least one of: applying a pressure, applying a cooling, or administering a vasoconstrictive agent to a vessel supplying blood to at least a portion of the brain. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Application
    Filed: January 31, 2014
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140276194
    Abstract: We report a method for optimizing the therapeutic efficacy of evoked responses elicited by one or more electrical impulses delivered to a neural structure, comprising: comparing a test evoked response to an evoked response elicited by therapeutically efficacious electrical stimulation; adjusting at least one parameter of the electrical impulses in response to a determination that said test evoked response is not similar to the therapeutic evoked response; determining that the test evoked response resembles the therapeutic evoked response after performing at least one of said adjustments; and saving to memory at least one adjusted parameter that increased the similarity between the test evoked response and the therapeutic evoked response. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140275838
    Abstract: We report a method of a method for detecting an epileptic seizure, comprising providing a first body signal reference value; determining a current body signal value from a time series of body signals; comparing the current body signal value and the first reference value; determining a work level of the patient; determining whether the current body signal value comprises an ictal component, based on the work level and the comparing; issuing a detection of an epileptic seizure in response to the determination that the current body signal value comprises the ictal component; and taking at least one further action (e.g. warning, delivering a therapy, etc.), based on the detection. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140277256
    Abstract: We report a method of automatically titrating an electrical therapy administered to a patient by an implanted medical device to a target dosage, comprising programming the medical device with a programmed electrical therapy comprising a first target value for a first therapy parameter; programming at least one titration parameter for automatically adjusting the first therapy parameter from a first value to the first target value over a titration time period initiating the electrical therapy, wherein the first therapy parameter comprises said first value; and automatically titrating the electrical therapy by making a plurality of adjustments to the value of the first therapy parameter, whereby the first electrical therapy parameter is changed from the first value to the first target value according to a titration function. We also report a medical device system configured to implement the method.
    Type: Application
    Filed: March 10, 2014
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140275828
    Abstract: We report method of detecting a pathological body state of a patient, comprising receiving a body signal of the patient; determining a body index from said body signal; determining an activity level of said patient; determining a value range for said body index for said patient, based at least in part on said activity level; comparing said body index to said value range; and detecting a pathological state when said body index is outside said value range. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Application
    Filed: November 19, 2013
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140276238
    Abstract: Methods, systems, and apparatuses are provided for detecting fall events of a person. Fall events are falls that are likely to occur, are occurring, or have occurred. Fall detectors and fall detector systems detect fall events of the person. Data relating to the person are received from sensors and analyzed to perform fall detection. Data relating to the person includes accelerations and forces experience by the person, changes in body position of the person, movements of the person, and body signals and sounds of the person. Neurological tests are administered to determine levels of responsiveness and awareness of the person in response to detections. Warnings are issued, and safety measures are deployed, in response to detections. Data relating to fall events are recorded and logged. Fall event histories based upon the logged data and fall detection algorithm performance are used to improve future fall detection and prediction.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Inventor: Ivan Osorio
  • Publication number: 20140276129
    Abstract: We report a method comprising receiving a first indication to gather a first biological signal or feature thereof from a patient; gathering the first biological signal or feature thereof; receiving a second indication to stop gathering the first biological signal or feature thereof, wherein the second indication relates to a detection of an end of a brain state change; and stopping gathering the first biological signal or feature thereof. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Application
    Filed: March 11, 2014
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140276128
    Abstract: We report a method for detecting epileptic or non-epileptic seizures, comprising: receiving a heart rate of a patient; calculating a percentage change of the heart rate in reference to at least one of the patient's maximal heart rate, reserve heart rate, or a resting heart rate; detecting an epileptic seizure if the percentage increase in the heart rate reaches a threshold value; and taking at least one responsive action selected from issuing a warning, delivering a therapy, determining a seizure severity, or logging at least one of a date and time of occurrence of the seizure, its severity, the type of therapy, or its effect, in response to the detection. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Application
    Filed: January 31, 2014
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140276549
    Abstract: We disclose methods and medical device systems for automated delivery of therapies for pain and determination of need for and safety of treatment. In one embodiment, such a medical device system may comprise a sensor configured to sense at least one body signal from a patient; and a medical device configured to receive a first sensed body signal from the sensor; determine a patient pain index based at least in part on said first sensed body signal; determine whether said patient pain index is above at least a first pain index threshold; determine a safety index based at least in part on a second sensed body signal; select a pain treatment regimen based on at least one of said safety index and or a determination that said pain index is above said first pain index threshold; and deliver said pain treatment regimen.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: FLINT HILLS SCIENTIFIC, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140275831
    Abstract: We report a method of determining an occurrence of an epileptic convulsive seizure in a patient, comprising: receiving body data from a patient during a first time period, determining a work level relating to said first time period at least based partially upon said body data; determining whether said work level exceeds an extreme work level threshold; performing a responsive action, in response to a determination that said work level exceeds said extreme work level threshold. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Application
    Filed: January 30, 2014
    Publication date: September 18, 2014
    Applicant: FLINT HILLS SCIENTIFIC, L.L.C.
    Inventor: Ivan Osorio
  • Publication number: 20140275840
    Abstract: We report a method of detecting a pathological body state of a patient, comprising receiving a body signal of the patient; determining a BDV from said body signal; determining an activity level of said patient; determining a value range for said BDV for said patient, based at least in part on said activity level; comparing said BDV to said value range; and detecting a pathological state when said BDV is outside said value range. We also report a medical device system configured to implement the method. We also report a non-transitory computer readable program storage unit encoded with instructions that, when executed by a computer, perform the method.
    Type: Application
    Filed: March 13, 2014
    Publication date: September 18, 2014
    Applicant: Flint Hills Scientific, L.L.C.
    Inventor: Ivan Osorio
  • Patent number: 8831732
    Abstract: Methods, systems, and apparatus for quantifying the quality of a fiducial time marker for a candidate heart beat, quantifying the quality of a candidate heart beat, or determining a time of beat sequence of the patient's heart. A fiducial time marker is obtained for a candidate heart beat. A quality index of said candidate heart beat is set to a first value. The candidate heart beat is tested with at least one beat validity test. At least a second value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least one beat validity test. The candidate heart beat is tested with at least a second heart beat validity test. At least a third value is added to said quality index of said candidate heart beat if said candidate heart beat passes said at least second heart beat validity test.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: September 9, 2014
    Assignee: Cyberonics, Inc.
    Inventors: Mark Frei, Ivan Osorio