Patents by Inventor Ivan Perez

Ivan Perez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230330157
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Application
    Filed: May 17, 2023
    Publication date: October 19, 2023
    Applicant: Eligo Bioscience
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Publication number: 20230287415
    Abstract: The present invention relates to a pharmaceutical composition comprising a LCoR activator and an immune checkpoint inhibitor (ICI), to its use in the treatment of cancer and to the use of LCoR as marker of response to immunotherapy in cancer treatment.
    Type: Application
    Filed: July 23, 2021
    Publication date: September 14, 2023
    Inventors: Antoni CELIÀ TERRASSA, Joan ALBANELL MESTRES, Catalina ROZALÉN MIRALLES, Iván PÉREZ NÚÑEZ
  • Publication number: 20230226129
    Abstract: The invention relates to methods, kits and compositions for reducing the level of or eliminating Bacteroides in situ. The invention encompasses methods of preventing myocarditis, treating myocarditis or dilated cardiomyopathy, or limiting progression of myocarditis toward dilated cardiomyopathy in a subject in need thereof, comprising reducing the amount of Bacteroides sp. in the subject. The invention further encompasses methods of diagnosis of a subject as having myocarditis or dilated cardiomyopathy. The invention also encompasses compositions preventing myocarditis, treating myocarditis or dilated cardiomyopathy, or limiting progression of myocarditis toward dilated cardiomyopathy in a subject in need thereof.
    Type: Application
    Filed: January 25, 2023
    Publication date: July 20, 2023
    Inventors: Xavier Duportet, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig
  • Patent number: 11690880
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Grant
    Filed: November 3, 2022
    Date of Patent: July 4, 2023
    Assignee: Eligo Bioscience
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Publication number: 20230113800
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Application
    Filed: November 3, 2022
    Publication date: April 13, 2023
    Applicant: Eligo Bioscience
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Patent number: 11617773
    Abstract: The invention relates to methods, kits and compositions for reducing the level of or eliminating Bacteroides in situ. The invention encompasses methods of preventing myocarditis, treating myocarditis or dilated cardiomyopathy, or limiting progression of myocarditis toward dilated cardiomyopathy in a subject in need thereof, comprising reducing the amount of Bacteroides sp. in the subject. The invention further encompasses methods of diagnosis of a subject as having myocarditis or dilated cardiomyopathy. The invention also encompasses compositions preventing myocarditis, treating myocarditis or dilated cardiomyopathy, or limiting progression of myocarditis toward dilated cardiomyopathy in a subject in need thereof.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: April 4, 2023
    Assignees: Eligo Bioscience, Kantonsspital St.Gallen
    Inventors: Xavier Duportet, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig
  • Patent number: 11534467
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: December 27, 2022
    Assignee: Eligo Bioscience
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina Del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Publication number: 20220233610
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 28, 2022
    Applicant: Eligo Bioscience
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Patent number: 11376286
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: July 5, 2022
    Assignee: ELIGO BIOSCIENCE
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Publication number: 20220166900
    Abstract: A method of calibrating a printing device, wherein the method comprises: associating a weighted printing value to each of a plurality of pixels, wherein associating a weighted printing value to each pixel comprises: obtaining, from a first calibration table, a first calibration value; obtaining, from a second calibration table, a second calibration value; obtaining first and second weighting factors, wherein the first weighting factor is obtained from a weighting table, generating the weighted printing value as the sum of the first calibration value weighted with the first weighting factor and the second calibration value weighted with the second weighting factor.
    Type: Application
    Filed: July 15, 2019
    Publication date: May 26, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Carlos Fajardo Sanchez, Joan Vidal Fortia, Ivan Perez Laka
  • Publication number: 20220132000
    Abstract: Certain examples relate to converting between color spaces. A digital representation of an input color is pre-processed to convert the digital representation into a multidimensional node representing a region in the input color space and a set of adjustment values. The multidimensional node is mapped to a digital representation of an output color. The digital representation of the output color is adjusted using the set of adjustment values.
    Type: Application
    Filed: July 10, 2019
    Publication date: April 28, 2022
    Applicant: Hewlett-Packard Development Company, L.P.
    Inventors: Carlos Fajardo Sanchez, Joan Vidal Fortia, Ivan Perez Laka
  • Publication number: 20220031767
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 3, 2022
    Applicant: Eligo Bioscience
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Patent number: 11224621
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: January 18, 2022
    Assignee: ELIGO BIOSCIENCE
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Publication number: 20210315944
    Abstract: The invention encompasses compositions, kits and methods for modifying bacteria, preferably naturally occurring bacteria, in situ. These can be used to treat, prevent or cure microbiome-associated diseases or disorders by modulating the molecules expressed and/or secreted by bacterial populations of the microbiome in a specific manner. The genomic modifications can modify the interactions between part or all of these populations and the host in a way that decreases their deleterious potential on host health. The compositions, kits and methods of the invention do not result in the direct death of these populations or a direct significant inhibition of their growth. The invention further includes methods for screening for genetic modifications in the bacteria, for determining the efficiency of vectors at inducing these genetic mutations, and for determining the effects of these mutations on bacterial growth.
    Type: Application
    Filed: April 8, 2021
    Publication date: October 14, 2021
    Inventors: Xavier Duportet, Antoine Decrulle, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig, Jesus Fernandez Rodriguez, Andreas Brodel
  • Publication number: 20210315950
    Abstract: The invention relates to methods, kits and compositions for reducing the level of or eliminating Bacteroides in situ. The invention encompasses methods of preventing myocarditis, treating myocarditis or dilated cardiomyopathy, or limiting progression of myocarditis toward dilated cardiomyopathy in a subject in need thereof, comprising reducing the amount of Bacteroides sp. in the subject. The invention further encompasses methods of diagnosis of a subject as having myocarditis or dilated cardiomyopathy. The invention also encompasses compositions preventing myocarditis, treating myocarditis or dilated cardiomyopathy, or limiting progression of myocarditis toward dilated cardiomyopathy in a subject in need thereof.
    Type: Application
    Filed: April 8, 2021
    Publication date: October 14, 2021
    Inventors: Xavier Duportet, Cristina del Carmen Gil-Cruz, Christian Ivan Pérez-Shibayama, Burkhard Ludewig
  • Patent number: 10116837
    Abstract: Examples relate to providing synchronized look-up table loading. In some examples, a print job is processed using an initial look-up table in processor memory. In response to the processing of the print job reaching a buffer trigger row of a portion of the print job, look-up metadata is accessed to locate a next look-up table. At this stage, the next look-up table is dynamically loaded into the processor memory as the processor continues to process the print job, where the processing of the print job begins using the next look-up table after a target row of the portion of the print job is reached.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: October 30, 2018
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Joan Vidal Fortia, Ivan Perez Laka, Fernando Viciano Martin
  • Publication number: 20180103181
    Abstract: Examples relate to providing synchronized look-up table loading. In some examples, a print job is processed using an initial look-up table in processor memory. In response to the processing of the print job reaching a buffer trigger row of a portion of the print job, look-up metadata is accessed to locate a next look-up table. At this stage, the next look-up table is dynamically loaded into the processor memory as the processor continues to process the print job, where the processing of the print job begins using the next look-up table after a target row of the portion of the print job is reached.
    Type: Application
    Filed: December 13, 2017
    Publication date: April 12, 2018
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Joan Vidal Fortia, Ivan Perez Laka, Fernando Viciano Martin
  • Patent number: 9883081
    Abstract: Examples relate to providing synchronized look-up table loading. In some examples, a print job is processed using an initial look-up table in processor memory, in response to the processing of the print job reaching a buffer trigger row of a portion of the print job, look-up metadata is accessed to locate a next look-up table. At this stage, the next look-up table is dynamically loaded into the processor memory as the processor continues to process the print job, where the processing of the print job begins using the next look-up table after a target row of the portion of the print job is reached.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: January 30, 2018
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Joan Vidal Fortia, Ivan Perez Laka, Fernando Viciano Martin
  • Publication number: 20170085754
    Abstract: Examples relate to providing synchronized look-up table loading. In some examples, a print job is processed using an initial look-up table in processor memory, in response to the processing of the print job reaching a buffer trigger row of a portion of the print job, look-up metadata is accessed to locate a next look-up table. At this stage, the next look-up table is dynamically loaded into the processor memory as the processor continues to process the print job, where the processing of the print job begins using the next look-up table after a target row of the portion of the print job is reached.
    Type: Application
    Filed: May 30, 2014
    Publication date: March 23, 2017
    Applicant: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P.
    Inventors: Joan Vidal Fortia, Ivan Perez Laka, Fernando Viciano Martin
  • Patent number: 9242136
    Abstract: An exercise assembly for selectively providing resistance to a user's hand includes an article of apparel that may be worn on a user's hand. A resistance band is operationally coupled to the article of apparel. A handle is operationally coupled to the article of apparel. The handle is coupled to the resistance band. The handle selectively places the resistance band in a resisting position. The resistance band provides resistance to the user's hand.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: January 26, 2016
    Inventor: Ivan Perez