Patents by Inventor Ivan Ratchev

Ivan Ratchev has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8460429
    Abstract: A method of smelting a nickel intermediate product in a smelter that contains a molten bath of metal and slag to produce a nickel product, the method comprising supplying the nickel intermediate product and a solid reductant to the smelter and smelting the nickel intermediate product to produce molten nickel, and controlling the chemistry of the slag so that the slag has (a) a high solubility for elements and compounds in the nickel intermediate product that are regarded as contaminants in the nickel product and (b) a liquidus temperature in the range of 1300-1700 C.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: June 11, 2013
    Assignee: BHP Billiton Innovation Pty Ltd
    Inventors: Ivan Ratchev, Gregory David Rigby, René Ignacio Olivares, Grant Caffery
  • Publication number: 20110120881
    Abstract: A method of reducing a titanium oxide in a solid state in an electrolytic cell which includes an anode, a cathode formed at least in part from the titanium oxide, and a molten electrolyte which includes cations of a metal that is capable of chemically reducing the cathode titanium oxide, which method includes operating the cell at a potential that is above a potential at which cations of the metal that is capable of chemically reducing the cathode titanium oxide deposit as the metal on the cathode, whereby the metal chemically reduces the cathode titanium oxide, and which method is characterised by refreshing the electrolyte and/or changing the cell potential in later stages of the operation of the cell as required having regard to the reactions occurring in the cell and the concentration of oxygen in the titanium oxide in the cell in order to produce high purity titanium.
    Type: Application
    Filed: December 6, 2010
    Publication date: May 26, 2011
    Inventors: LES STREZOV, Ivan Ratchev, Steve Osborn
  • Publication number: 20110118100
    Abstract: A method of smelting a nickel intermediate product in a smelter that contains a molten bath of metal and slag to produce a nickel product, the method comprising supplying the nickel intermediate product and a solid reductant to the smelter and smelting the nickel intermediate product to produce molten nickel, and controlling the chemistry of the slag so that the slag has (a) a high solubility for elements and compounds in the nickel intermediate product that are regarded as contaminants in the nickel product and (b) a liquidus temperature in the range of 1300-1700 C.
    Type: Application
    Filed: February 12, 2009
    Publication date: May 19, 2011
    Inventors: Ivan Ratchev, Gregory David Rigby, René Ignacio Olivares, Grant Caffery
  • Publication number: 20110103998
    Abstract: A method of producing a nickel product (including nickel alloy products and products such as nickel matte) from a nickel intermediate product is disclosed. The method comprises smelting a dried nickel intermediate product in a molten bath-based smelter and forming a molten pool containing a molten metal and a slag, with the molten metal being the nickel product. Intermediate and end products produced by the method are also disclosed.
    Type: Application
    Filed: October 24, 2008
    Publication date: May 5, 2011
    Inventors: Ivan Ratchev, Grant Caffery, Simon Philip Sullivan, René Ignacio Olivares, Gregory David Rigby
  • Patent number: 7935171
    Abstract: A process for producing a metallic nickel product with a low iron content, that includes: (i) providing an acidic product liquor; (ii) subjecting the acidic product liquor to an ion exchange process to absorb the nickel and part of the iron; (iii) eluting the nickel and iron to produce an eluate containing the nickel and iron. (iv) neutralising the eluate to leave an iron depleted eluate; (v) neutralising the iron depleted eluate to cause precipitation of nickel hydroxide containing low iron; (vi) calcining the nickel hydroxide to convert it to nickel oxide; (vii) subjecting the nickel oxide to direct smelting in the presence of a reductant to produce a molten nickel phase; and (viii) refining the molten nickel phase by oxidation to produce a metallic nickel product with low iron content.
    Type: Grant
    Filed: August 22, 2007
    Date of Patent: May 3, 2011
    Assignee: BHP Billiton SSM Development Pty Ltd.
    Inventors: Ivan Ratchev, Houyuan Liu, Alexey Duarte, Harald Theowald Muller
  • Patent number: 7918985
    Abstract: A method of reducing a titanium oxide in a solid state in an electrolytic cell which includes an anode, a cathode formed at least in part from the titanium oxide, and a molten electrolyte which includes cations of a metal that is capable of chemically reducing the cathode titanium oxide, which method includes operating the cell at a potential that is above a potential at which cations of the metal that is capable of chemically reducing the cathode titanium oxide deposit as the metal on the cathode, whereby the metal chemically reduces the cathode titanium oxide, and which method is characterized by refreshing the electrolyte and/or changing the cell potential in later stages of the operation of the cell as required having regard to the reactions occurring in the cell and the concentration of oxygen in the titanium oxide in the cell in order to produce high purity titanium.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: April 5, 2011
    Assignee: Metalysis Limited
    Inventors: Les Strezov, Ivan Ratchev, Steve Osborn
  • Patent number: 7758740
    Abstract: An electrolytic cell for electrochemically reducing metal oxide powders and/or pellets is disclosed. The cell includes a cathode (25) in the form of a plate that has an upper surface for supporting metal oxide powders and/or pellets. The plate is horizontally disposed or slightly inclined and has a forward end and a rearward end and is immersed in an electrolyte bath. The plate is supported for movement so as to cause metal oxide powders and/or pellets on the upper surface of the plate to move toward a forward end of the plate. The cell also includes a means for causing metal oxide powders and/or pellets to move over the upper surface of the plate toward the forward end of the cathode while in contact with molten electrolyte whereby electrochemical reduction of the metal oxide to metal can occur. A method of continuously or semi-continuously reducing metal oxide powders and/or pellets in the cell is also disclosed.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: July 20, 2010
    Assignee: Metalysis Limited
    Inventors: Andrew Arthur Shook, Gregory David Rigby, Ivan Ratchev
  • Publication number: 20100154593
    Abstract: A process for producing a metallic nickel product with a low iron content, including the steps of: (i) providing an acidic product liquor containing at least nickel and iron; (ii) subjecting said acidic product liquor to an ion exchange process wherein an ion exchange resin selectively absorbs said nickel and part of the iron from said product liquor; (iii) eluting the nickel and iron from said resin with an acidic solution to produce an eluate containing said nickel and iron. (iv) neutralising said eluate to a pH value in the range from 2.5 to 3.
    Type: Application
    Filed: August 22, 2007
    Publication date: June 24, 2010
    Applicant: BHP BILLITON SSM DEVELOPMENT PTY LTD
    Inventors: Ivan Ratchev, Houyuan Liu, Alexey Duarte, Harald Theowald Muller
  • Patent number: 7628904
    Abstract: An electrochemical cell for electrochemical reduction of a metal oxide in a solid state is disclosed. The cell includes a molten electrolyte (14), an anode (10) formed from carbon in contact with the electrolyte, a cathode (20) formed at least in part from the metal oxide in contact with the electrolyte, and a membrane (28) that is permeable to oxygen anions and is impermeable to carbon in ionic and non-ionic forms positioned between the cathode and the anode to thereby prevent migration of carbon from the anode to the cathode. The membrane includes a body (32) and a lining (34) on the surface of the body on the cathode side of the membrane. The lining is formed from a material that is inert with respect to dissolved metal in the electrolyte and is impermeable to the dissolved metal. An electrochemical method based on the cell is also disclosed.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: December 8, 2009
    Assignee: Metalysis Limited
    Inventors: Les Strezov, Ivan Ratchev, Steve Osborn, Sergey Alexander Bliznyukov
  • Patent number: 7470355
    Abstract: A process for electrochemically reducing a metal oxide, such as titania, in a solid state in an electrochemical cell that includes a bath of molten electrolyte, a cathode, and an anode, which process includes the steps of: a) applying a cell potential across the anode and the cathode that is capable of electrochemically reducing the metal oxide supplied to the molten electrolyte bath, b) continuously or semi-continuously feeding the metal oxide in powder and/or pellet form into the molten electrolyte bath, c) transporting the powders and/or pellets along a path within the molten electrolyte bath and reducing the metal oxide as the metal oxide powders and/or pellets move along the path, and d) continuously or semi-continuously removing metal from the molten electrolyte bath. Also disclosed and claims is an electrochemical cell for carrying out this process.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: December 30, 2008
    Assignee: BHP Billiton Innovation Pty Ltd
    Inventors: Steve Osborn, Ivan Ratchev, Les Strezov, Greg Rigby
  • Publication number: 20080149495
    Abstract: A process for selectively forming a morphology of reduced material is disclosed. The reduced material, such as titanium, is formed by a process of electrochemically reducing a metal oxide feed material, such as titania, in a solid state in an electrolytic cell containing molten chlorine-containing electrolyte in the cell. The process for selectively forming the morphology of reduced material includes sintering the reduced material and forming a morphology that is susceptible to subsequent washing of retained electrolyte in the reduced material.
    Type: Application
    Filed: January 30, 2007
    Publication date: June 26, 2008
    Inventors: Kannapar Mukunthan, Ivan Ratchev, Andrew Arthur Shook
  • Publication number: 20080110764
    Abstract: A method of electrolytically reducing a metal oxide (such as aluminium and magnesium oxides) to produce a metal in an electrolytic call is disclosed. The method includes electrolytically reducing the metal oxide in an electrolytic cell that includes a pool of molten metal, the metal being the metal of the metal oxide to be reduced, and the molten metal pool forming a cathode of the cell. The electrolytic cell also includes a pool of molten electrolyte in contact with the molten metal, the electrolyte containing alkali and/or alkaline earth halides. The electrolytic cell also includes an anode extending into the electrolyte and a body of metal oxide to reduced in contact with the molten metal and the electrolyte.
    Type: Application
    Filed: October 26, 2007
    Publication date: May 15, 2008
    Inventors: Lazar Strezov, Ivan Ratchev, Steve Osborn
  • Publication number: 20080047845
    Abstract: A process for electrochemically reducing a metal oxide feed material in a solid state in an electrolytic cell is disclosed. The cell includes a molten bath of electrolyte, an anode, a cathode, and a means for applying a potential across the anode and the cathode. The process is characterised by supplying an amount of electrolyte into the bath that is greater than the amount of electrolyte that is required to replace electrolyte removed from the bath with reduced material and removing molten electrolyte from the bath to maintain the bath height at a required height or within a range of required heights.
    Type: Application
    Filed: October 14, 2004
    Publication date: February 28, 2008
    Inventors: Gregory David Rigby, Ivan Ratchev, Andrew Arthur Shook
  • Publication number: 20080016986
    Abstract: A process for the production of ferro-nickel or nickel matte from a product liquor solution containing at least nickel, cobalt, iron and acid soluble impurities, said process including the steps of: (a) contacting the product liquor solution (7) containing the nickel, cobalt, iron and acid soluble impurities with an ion exchange resin (8), wherein the resin selectively absorbs nickel and iron from the solution leaving the cobalt and the acid soluble impurities in the raffinate (9); (b) stripping the nickel and iron from the resin with a sulfuric acid solution to produce an eluate (11) containing nickel and iron; (c) neutralising the eluate to precipitate a mixed nickel iron hydroxide product (13); and (d) reducing and smelting the mixed nickel iron hydroxide product to produce ferro-nickel (29) or nickel matte (24).
    Type: Application
    Filed: March 16, 2007
    Publication date: January 24, 2008
    Inventors: Houyuan Liu, Alexey Duarte, Wolf Meihack, Ivan Ratchev
  • Publication number: 20080011126
    Abstract: A process for producing a ferronickel product from a mixed nickel iron hydroxide product, said process including the steps of: providing a mixed nickel iron hydroxide product; pelletising the mixed nickel iron hydroxide product to produce nickel iron hydroxide pellets; calcining the nickel iron hydroxide pellets to produce mixed nickel iron oxide pellets; and reducing the nickel iron oxide pellets with one or more reducing gases at high temperatures to produce ferronickel pellets.
    Type: Application
    Filed: August 16, 2007
    Publication date: January 17, 2008
    Inventors: Alexey Duarte, Houyuan Liu, Ivan Ratchev
  • Publication number: 20070251833
    Abstract: A process for minimising reoxidation of reduced material is disclosed. The process applies to reduced material that has been formed by a process of electrochemically reducing a metal oxide feed material, such as titania, in a solid state in an electrolytic cell containing a molten electrolyte. The process for minimising reoxidation includes applying an electrical potential to reduced material at least while the reduced material remains immersed in the molten electrolyte.
    Type: Application
    Filed: January 30, 2007
    Publication date: November 1, 2007
    Inventors: Ivan Ratchev, Rene Olivares, Gregory Rigby, Sergey Bliznyukov
  • Publication number: 20070181438
    Abstract: A metal oxide feed material for an electrochemical reduction process is disclosed. The feed material is in the form of powders and/or pellets that have sufficient porosity, typically 35-60%, to enable penetration of molten electrolyte into the powders and/or pellets during the course of an electrochemical reduction process in an electrolytic cell and subsequent washing of electrolyte from the powders and/or pellets after the powders and/or pellets are discharged from the cell. A process for preparing the metal oxide feed material is also disclosed.
    Type: Application
    Filed: December 22, 2006
    Publication date: August 9, 2007
    Inventors: Rene Olivares, Ivan Ratchev, Gregory Rigby, Andrew Shook
  • Publication number: 20070181436
    Abstract: A method of producing titanium semi-finished or ready-to-use products from titanium oxide powders and/or pellets is disclosed. The method produces products that are not affected adversely by levels of chlorine that have an impact on performance, particularly weldability, of products made by other methods.
    Type: Application
    Filed: December 27, 2006
    Publication date: August 9, 2007
    Inventors: Kannapar Mukunthan, Ivan Ratchev, Andrew Shook
  • Publication number: 20070131560
    Abstract: A process for electrochemically reducing metal oxide feed material in a solid state is disclosed. The process includes the steps of agitating an electrolyte and metal oxide powders in the electrolyte and applying an electrical potential across a cathode in contact with the electrolyte and an anode and electrochemically reducing the metal oxides.
    Type: Application
    Filed: September 18, 2006
    Publication date: June 14, 2007
    Inventors: Ivan Ratchev, Rene Olivares, Andrew Shook, Gregory Rigby
  • Patent number: 7208075
    Abstract: A method of reducing a metal oxide in a solid state, in an electrolytic cell, is provided, as is an electrolytic cell suitable for performing the method. The cathode of the electrolytic cell is formed at least in part from the metal oxide to be reduced, and the electrolyte includes cations of a metal that is capable of chemically reducing the cathode metal oxide. The method includes operating the cell at a potential that is above the potential at which cations of the reducing metal will deposit as metal on the cathode.
    Type: Grant
    Filed: August 11, 2003
    Date of Patent: April 24, 2007
    Assignee: BHP Billiton Innovation Pty Ltd.
    Inventors: Lazar Strezov, Ivan Ratchev, Steve Osborn