Patents by Inventor Ivan V. Vlassiouk

Ivan V. Vlassiouk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10836132
    Abstract: Graphene reinforced materials and related methods of manufacture are provided. The graphene reinforced materials include graphene sheet or scroll, graphene-polymer sheet or scroll, and graphene-carbon sheet or scroll, each having material properties that are attractive across a broad range of applications and industries. The graphene reinforced materials generally include monolayer or multilayer graphene that is synthesized by annealing a catalyst substrate within a CVD chamber, introducing a hydrocarbon gas as a carbon source with the CVD chamber to form a layer of graphene on the catalyst substrate, detaching the catalyst substrate from the layer of graphene, and rolling the layer of graphene onto itself to form a scroll, optionally with the addition of a polymer layer or carbonized layer on the graphene layer.
    Type: Grant
    Filed: September 19, 2018
    Date of Patent: November 17, 2020
    Assignee: UT-Battelle, LLC
    Inventors: Ivan V. Vlassiouk, Ilia N. Ivanov, Panagiotis G. Datskos
  • Patent number: 10676586
    Abstract: A method for producing a composite polymeric article, an additive for a polymeric article, and a composite polymeric article are provided. The method generally includes providing a plurality of graphene nanoplatelets, providing a plurality of silica nanofibers, providing a polymeric material, and distributing the plurality of silica nanofibers and the plurality of graphene nanoplatelets within the polymeric material to achieve a composite article. The additive for a polymeric article includes a plurality of graphene nanoplatelets and a plurality of silica nanofibers. The composite polymeric article includes a plurality of graphene nanoplatelets, a plurality of silica nanofibers, and a polymeric matrix. The plurality of graphene nanoplatelets and the plurality of silica nanofibers are distributed within the polymeric matrix. The silica nanofibers have a mean cross sectional diameter of not more than 100 nm.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: June 9, 2020
    Assignee: UT-Battelle LLC
    Inventors: Georgios Polyzos, Jaswinder K. Sharma, Ivan V. Vlassiouk, Daniel A. Schaffer, Panagiotis G. Datskos, Timothy J. LaClair, Jaehyeung Park
  • Patent number: 10233566
    Abstract: Systems and methods for synthesizing continuous single crystal graphene are provided. A catalytic substrate is drawn through a chemical vapor deposition chamber in a first lengthwise direction while flowing a hydrogen gas through the chemical vapor deposition chamber in the same lengthwise direction. A hydrocarbon precursor gas is supplied directly above a surface of the catalytic substrate. A high concentration gradient of the hydrocarbon precursor at the crystal growth front is generated to promote the growth of a continuous single crystal graphene film while suppressing the growth of seed domains ahead of the crystal growth front.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: March 19, 2019
    Assignee: UT-Battelle, LLC
    Inventors: Frederick Alyious List, III, Yijing Y. Stehle, Ivan V. Vlassiouk, Sergei N. Smirnov
  • Publication number: 20190061303
    Abstract: Graphene reinforced materials and related methods of manufacture are provided. The graphene reinforced materials include graphene sheet or scroll, graphene-polymer sheet or scroll, and graphene-carbon sheet or scroll, each having material properties that are attractive across a broad range of applications and industries. The graphene reinforced materials generally include monolayer or multilayer graphene that is synthesized by annealing a catalyst substrate within a CVD chamber, introducing a hydrocarbon gas as a carbon source with the CVD chamber to form a layer of graphene on the catalyst substrate, detaching the catalyst substrate from the layer of graphene, and rolling the layer of graphene onto itself to form a scroll, optionally with the addition of a polymer layer or carbonized layer on the graphene layer.
    Type: Application
    Filed: September 19, 2018
    Publication date: February 28, 2019
    Inventors: Ivan V. Vlassiouk, Ilia N. Ivanov, Panagiotis G. Datskos
  • Publication number: 20180346684
    Abstract: A method for producing a composite polymeric article, an additive for a polymeric article, and a composite polymeric article are provided. The method generally includes providing a plurality of graphene nanoplatelets, providing a plurality of silica nanofibers, providing a polymeric material, and distributing the plurality of silica nanofibers and the plurality of graphene nanoplatelets within the polymeric material to achieve a composite article. The additive for a polymeric article includes a plurality of graphene nanoplatelets and a plurality of silica nanofibers. The composite polymeric article includes a plurality of graphene nanoplatelets, a plurality of silica nanofibers, and a polymeric matrix. The plurality of graphene nanoplatelets and the plurality of silica nanofibers are distributed within the polymeric matrix. The silica nanofibers have a mean cross sectional diameter of not more than 100 nm.
    Type: Application
    Filed: June 6, 2018
    Publication date: December 6, 2018
    Inventors: Georgios Polyzos, Jaswinder K. Sharma, Ivan V. Vlassiouk, Daniel A. Schaffer, Panagiotis G. Datskos, Timothy J. LaClair, Jaehyeung Park
  • Patent number: 10093072
    Abstract: Graphene reinforced materials and related methods of manufacture are provided. The graphene reinforced materials include graphene sheet or scroll, graphene-polymer sheet or scroll, and graphene-carbon sheet or scroll, each having material properties that are attractive across a broad range of applications and industries. The graphene reinforced materials generally include monolayer or multilayer graphene that is synthesized by annealing a catalyst substrate within a CVD chamber, introducing a hydrocarbon gas as a carbon source with the CVD chamber to form a layer of graphene on the catalyst substrate, detaching the catalyst substrate from the layer of graphene, and rolling the layer of graphene onto itself to form a scroll, optionally with the addition of a polymer layer or carbonized layer on the graphene layer.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: October 9, 2018
    Assignee: UT-Battelle, LLC
    Inventors: Ivan V. Vlassiouk, Ilia N. Ivanov, Panagiotis G. Datskos
  • Patent number: 10023468
    Abstract: Systems and methods for synthesizing continuous graphene sheets are provided. The systems and methods include passing a catalyst substrate through a heated chemical vapor deposition chamber and exposing the substrate to a reaction gas mixture of hydrogen and hydrocarbon at a preselected location within the chamber. The reaction gas mixture can include hydrogen having a partial pressure of between about 0 Torr and 20 Torr, hydrocarbon having a partial pressure of between about 20 mTorr and about 10 Torr, and one or more buffer gases. The buffer gases can include argon or other noble gases to maintain atmospheric pressure within the chemical deposition chamber. The resulting graphene can be made with continuous mono and multilayers (up to six layers) and have single crystalline hexagonal grains with a preselected nucleation density and domain size for a range of applications.
    Type: Grant
    Filed: January 4, 2013
    Date of Patent: July 17, 2018
    Assignee: UT-Battelle, LLC
    Inventors: Ivan V. Vlassiouk, Sergei N. Smirnov, William H. Peter, Adrian S. Sabau, Sheng Dai, Pasquale F. Fulvio, Ilia N. Ivanov, Nickolay V. Lavrik, Panagiotis G. Datskos
  • Publication number: 20180187331
    Abstract: Systems and methods for synthesizing continuous single crystal graphene are provided. A catalytic substrate is drawn through a chemical vapor deposition chamber in a first lengthwise direction while flowing a hydrogen gas through the chemical vapor deposition chamber in the same lengthwise direction. A hydrocarbon precursor gas is supplied directly above a surface of the catalytic substrate. A high concentration gradient of the hydrocarbon precursor at the crystal growth front is generated to promote the growth of a continuous single crystal graphene film while suppressing the growth of seed domains ahead of the crystal growth front.
    Type: Application
    Filed: December 29, 2016
    Publication date: July 5, 2018
    Inventors: Frederick Alyious List, III, Yijing Y. Stehle, Ivan V. Vlassiouk, Sergei N. Smirnov
  • Patent number: 9873090
    Abstract: A method for fabricating isolated pores in an inorganic membrane includes the steps of patterning the inorganic membrane to selectively expose a portion of the membrane, forming a plurality of tracks of material damage in the exposed portion of the inorganic membrane by irradiation with energetic ions, and chemically etching the track damaged material to define the pores through the inorganic membrane with a predetermined geometrically defined cross sectional shape and with a controlled diameter range from less than 1 nanometer and up to micrometer scale.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: January 23, 2018
    Assignee: The Regents of the University of California
    Inventors: Zuzanna S. Siwy, Ivan V. Vlassiouk, Pavel Yu Apel, Sergey N. Dmitriev
  • Publication number: 20150266258
    Abstract: Graphene reinforced materials and related methods of manufacture are provided. The graphene reinforced materials include graphene sheet or scroll, graphene-polymer sheet or scroll, and graphene-carbon sheet or scroll, each having material properties that are attractive across a broad range of applications and industries. The graphene reinforced materials generally include monolayer or multilayer graphene that is synthesized by annealing a catalyst substrate within a CVD chamber, introducing a hydrocarbon gas as a carbon source with the CVD chamber to form a layer of graphene on the catalyst substrate, detaching the catalyst substrate from the layer of graphene, and rolling the layer of graphene onto itself to form a scroll, optionally with the addition of a polymer layer or carbonized layer on the graphene layer.
    Type: Application
    Filed: March 18, 2014
    Publication date: September 24, 2015
    Inventors: Ivan V. Vlassiouk, Ilia N. Ivanov, Panagiotis G. Datskos
  • Publication number: 20140021133
    Abstract: A method for fabricating isolated pores in an inorganic membrane includes the steps of patterning the inorganic membrane to selectively expose a portion of the membrane, forming a plurality of tracks of material damage in the exposed portion of the inorganic membrane by irradiation with energetic ions, and chemically etching the track damaged material to define the pores through the inorganic membrane with a predetermined geometrically defined cross sectional shape and with a controlled diameter range from less than 1 nanometer and up to micrometer scale.
    Type: Application
    Filed: August 16, 2013
    Publication date: January 23, 2014
    Applicant: The Regents of the University of California
    Inventors: Zuzanna S. Siwy, Ivan V. Vlassiouk, Pavel Yu Apel, Sergey N. Dmitriev
  • Publication number: 20110139707
    Abstract: A method for fabricating isolated pores in an inorganic membrane includes the steps of patterning the inorganic membrane to selectively expose a portion of the membrane, forming a plurality of tracks of material damage in the exposed portion of the inorganic membrane by irradiation with energetic ions, and chemically etching the track damaged material to define the pores through the inorganic membrane with a predetermined geometrically defined cross sectional shape and with a controlled diameter range from less than 1 nanometer and up to micrometer scale.
    Type: Application
    Filed: June 11, 2010
    Publication date: June 16, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Zuzanna S. Siwy, Ivan V. Vlassiouk, Pavel Yu Apel, Sergey N. Dmitriev