Patents by Inventor Ivan Yanfeng Wang

Ivan Yanfeng Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11281280
    Abstract: Systems, apparatuses, and methods for reducing chiplet interrupt latency are disclosed. A system includes one or more processing nodes, one or more memory devices, a communication fabric coupled to the processing unit(s) and memory device(s) via link interfaces, and a power management unit. The power management unit manages the power states of the various components and the link interfaces of the system. If the power management unit detects a request to wake up a given component, and the link interface to the given component is powered down, then the power management unit sends an out-of-band signal to wake up the given component in parallel with powering up the link interface. Also, when multiple link interfaces need to be powered up, the power management unit powers up the multiple link interfaces in an order which complies with voltage regulator load-step requirements while minimizing the latency of pending operations.
    Type: Grant
    Filed: May 18, 2020
    Date of Patent: March 22, 2022
    Assignees: Advanced Micro Devices, Inc., ATI Technologies ULC
    Inventors: Benjamin Tsien, Michael J. Tresidder, Ivan Yanfeng Wang, Kevin M. Lepak, Ann Ling, Richard M. Born, John P. Petry, Bryan P. Broussard, Eric Christopher Morton
  • Publication number: 20200387208
    Abstract: Systems, apparatuses, and methods for reducing chiplet interrupt latency are disclosed. A system includes one or more processing nodes, one or more memory devices, a communication fabric coupled to the processing unit(s) and memory device(s) via link interfaces, and a power management unit. The power management unit manages the power states of the various components and the link interfaces of the system. If the power management unit detects a request to wake up a given component, and the link interface to the given component is powered down, then the power management unit sends an out-of-band signal to wake up the given component in parallel with powering up the link interface. Also, when multiple link interfaces need to be powered up, the power management unit powers up the multiple link interfaces in an order which complies with voltage regulator load-step requirements while minimizing the latency of pending operations.
    Type: Application
    Filed: May 18, 2020
    Publication date: December 10, 2020
    Inventors: Benjamin Tsien, Michael J. Tresidder, Ivan Yanfeng Wang, Kevin M. Lepak, Ann Ling, Richard M. Born, John P. Petry, Bryan P. Broussard, Eric Christopher Morton
  • Patent number: 10656696
    Abstract: Systems, apparatuses, and methods for reducing chiplet interrupt latency are disclosed. A system includes one or more processing nodes, one or more memory devices, a communication fabric coupled to the processing unit(s) and memory device(s) via link interfaces, and a power management unit. The power management unit manages the power states of the various components and the link interfaces of the system. If the power management unit detects a request to wake up a given component, and the link interface to the given component is powered down, then the power management unit sends an out-of-band signal to wake up the given component in parallel with powering up the link interface. Also, when multiple link interfaces need to be powered up, the power management unit powers up the multiple link interfaces in an order which complies with voltage regulator load-step requirements while minimizing the latency of pending operations.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: May 19, 2020
    Assignees: Advanced Micro Devices, Inc., ATI Technologies ULC
    Inventors: Benjamin Tsien, Michael J. Tresidder, Ivan Yanfeng Wang, Kevin M. Lepak, Ann Ling, Richard M. Born, John P. Petry, Bryan P. Broussard, Eric Christopher Morton