Patents by Inventor Ivana Jojic

Ivana Jojic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230286669
    Abstract: An over-pressure vent (OPV) system is provided for a fuel tank of an aircraft. The OPV system includes an OPV valve configured to be coupled in fluid communication with a supply line of a nitrogen enriched air distribution system (NEADS) such that the OPV valve is configured to vent pressure from the supply line. The OPV valve is configured to be coupled in fluid communication with the supply line upstream from an outlet of the supply line from which the NEADS delivers nitrogen enriched gas to the fuel tank. The OPV valve is configured to sense a pressure within the supply line upstream from the outlet of the supply line.
    Type: Application
    Filed: March 9, 2022
    Publication date: September 14, 2023
    Inventors: Ivana Jojic, Timothy Andrew Johnson, Andrew T. Johnson, David A. Ryan, Melissa A. Pilla, Bipin Giri, David Allen Adkins, II
  • Patent number: 11091273
    Abstract: A noncombustible gas distribution method includes distributing noncombustible gas to a center wing tank throughout a continuous, first flight period and, as a result, reducing flammability exposure time during the first flight period or during a subsequent flight period. The method includes not distributing noncombustible gas to left and right main wing tanks while the noncombustible gas is distributed to the center wing tank throughout the first flight period and while the left and right main wing tanks are non-flammable. A noncombustible gas distribution system includes a noncombustible gas source and distribution tubing from the gas source to left and right main wing tanks and a center wing tank. A distribution mechanism yields a greater proportion of gas flow per tank unit volume distributed to an outboard section of the left and right main wing tanks compared to an inboard section during a climb phase of the aircraft's flight.
    Type: Grant
    Filed: October 17, 2019
    Date of Patent: August 17, 2021
    Assignee: The Boeing Company
    Inventors: Ivana Jojic, Alan Grim, Bill F. Lin, Kristopher Vaughan
  • Publication number: 20200047910
    Abstract: A noncombustible gas distribution method includes distributing noncombustible gas to a center wing tank throughout a continuous, first flight period and, as a result, reducing flammability exposure time during the first flight period or during a subsequent flight period. The method includes not distributing noncombustible gas to left and right main wing tanks while the noncombustible gas is distributed to the center wing tank throughout the first flight period and while the left and right main wing tanks are non-flammable. A noncombustible gas distribution system includes a noncombustible gas source and distribution tubing from the gas source to left and right main wing tanks and a center wing tank. A distribution mechanism yields a greater proportion of gas flow per tank unit volume distributed to an outboard section of the left and right main wing tanks compared to an inboard section during a climb phase of the aircraft's flight.
    Type: Application
    Filed: October 17, 2019
    Publication date: February 13, 2020
    Inventors: Ivana Jojic, Alan Grim, Bill F. Lin, Kristopher Vaughan
  • Patent number: 10479521
    Abstract: A noncombustible gas distribution method includes distributing noncombustible gas to a center wing tank throughout a continuous, first flight period and, as a result, reducing flammability exposure time during the first flight period or during a subsequent flight period. The method includes not distributing noncombustible gas to left and right main wing tanks while the noncombustible gas is distributed to the center wing tank throughout the first flight period and while the left and right main wing tanks are non-flammable. A noncombustible gas distribution system includes a noncombustible gas source and distribution tubing from the gas source to left and right main wing tanks and a center wing tank. A distribution mechanism yields a greater proportion of gas flow per tank unit volume distributed to an outboard section of the left and right main wing tanks compared to an inboard section during a climb phase of the aircraft's flight.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: November 19, 2019
    Assignee: THE BOEING COMPANY
    Inventors: Ivana Jojic, Alan Grim, Bill F. Lin, Kristopher Vaughan
  • Patent number: 10000294
    Abstract: An aircraft fuel tank flammability reduction method includes feeding pressurized air into an air separation module containing a carbon membrane, the air feed exhibiting a normal pressure of no more than 55 psig. The method includes producing nitrogen-enriched air from the air separation module as a result of removing oxygen from the air feed. An aircraft fuel tank flammability reduction system includes a source for pressurized air, an air separation module configured to receive air feed from the pressurized air source, and a carbon membrane. The carbon membrane is configured to permeate oxygen from the air feed through the carbon membrane at a temperature of at least 120° C. (248° F.) and to produce nitrogen-enriched air from the air separation module as a result of removing oxygen from the air feed.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: June 19, 2018
    Assignee: THE BOEING COMPANY
    Inventors: Barbara J. Evosevich, Ivana Jojic
  • Publication number: 20180162543
    Abstract: A noncombustible gas distribution method includes distributing noncombustible gas to a center wing tank throughout a continuous, first flight period and, as a result, reducing flammability exposure time during the first flight period or during a subsequent flight period. The method includes not distributing noncombustible gas to left and right main wing tanks while the noncombustible gas is distributed to the center wing tank throughout the first flight period and while the left and right main wing tanks are non-flammable. A noncombustible gas distribution system includes a noncombustible gas source and distribution tubing from the gas source to left and right main wing tanks and a center wing tank. A distribution mechanism yields a greater proportion of gas flow per tank unit volume distributed to an outboard section of the left and right main wing tanks compared to an inboard section during a climb phase of the aircraft's flight.
    Type: Application
    Filed: December 9, 2016
    Publication date: June 14, 2018
    Inventors: Ivana Jojic, Alan Grim, Bill F. Lin, Kristopher Vaughan
  • Patent number: 9718556
    Abstract: A cooling system for a fuel tank of an aircraft includes a temperature sensor, a cooling system, and a control module. The temperature sensor detects a fuel temperature within the fuel tank. The cooling system maintains the fuel temperature below a control temperature. The phase change cooling system includes a heat exchanger. A cooling fluid flows through the heat exchanger and is in thermal communication with a surface of the fuel tank. The control module is in signal communication with the temperature sensor and the cooling system. The control module includes control logic for monitoring the temperature sensor, determining if the fuel temperature is above the control temperature, and generating an activation signal.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: August 1, 2017
    Assignee: The Boeing Company
    Inventors: Bradford A. Moravec, Rodney N. Graham, Alan Grim, Patrick J. Mulvaney, David A. Adkins, II, Eric C. Olson, Ivana Jojic, Mark M. Thornton, Jean-Philippe A. Beliéres
  • Patent number: 9636630
    Abstract: A gas separation method includes contacting a membrane filter with gas feed, permeating the gas from the gas feed through the membrane, and producing filtered gas from the filter. The filtered gas is produced from the filter as a result of the membrane removing any hydrocarbons containing six or more carbon atoms to produce a total of 0.001 ppm w/w or less. A gas separation method includes feeding gas into a filter containing a hollow fiber membrane that exhibits the property of resisting degradation due to exposure to hydrocarbons containing six or more carbon atoms. The filter exhibits a pressure drop across the membrane of less than 5 psi. The method includes feeding the filtered gas into a gas separation module that exhibits a susceptibility to degradation from exposure to hydrocarbons containing six or more carbon atoms.
    Type: Grant
    Filed: October 13, 2014
    Date of Patent: May 2, 2017
    Assignee: THE BOEING COMPANY
    Inventors: Barbara J Evosevich, Ivana Jojic
  • Patent number: 9566553
    Abstract: A fluid separation assembly and method are provided. The assembly has a hollow fiber bundle with a plurality of hollow fiber membranes. The assembly further has a pair of tubesheets, each encapsulating respective ends of the hollow fiber bundle. The assembly further has a plurality of radial through openings formed along a circumference of one or both of the tubesheets and radially through a body portion in one or both of the tubesheets. The radial through openings include center connected radial through openings and partial radial through openings, and intersect each, or substantially each, of the hollow fiber membranes. The assembly further has a housing surrounding the hollow fiber bundle and the tubesheets. The housing has a feed inlet port, a permeate outlet port, and a non-permeate outlet port. The feed inlet port and the non-permeate outlet port are in parallel alignment with a longitudinal central axis of the housing.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: February 14, 2017
    Assignees: The Boeing Company, Porogen Corporation
    Inventors: Brent Kenneth Theodore, Donald Ray Snow, Jr., James P. Huang, Michael J. Robinson, Ivana Jojic, Benjamin Bikson
  • Publication number: 20160152343
    Abstract: A cooling system for a fuel tank of an aircraft includes a temperature sensor, a cooling system, and a control module. The temperature sensor detects a fuel temperature within the fuel tank. The cooling system maintains the fuel temperature below a control temperature. The phase change cooling system includes a heat exchanger. A cooling fluid flows through the heat exchanger and is in thermal communication with a surface of the fuel tank. The control module is in signal communication with the temperature sensor and the cooling system. The control module includes control logic for monitoring the temperature sensor, determining if the fuel temperature is above the control temperature, and generating an activation signal.
    Type: Application
    Filed: December 2, 2014
    Publication date: June 2, 2016
    Inventors: Bradford A. Moravec, Rodney N. Graham, Alan Grim, Patrick J. Mulvaney, David A. Adkins, II, Eric C. Olson, Ivana Jojic, Mark M. Thornton, Jean-Philippe A. Belières
  • Patent number: 9327243
    Abstract: An aircraft fuel tank flammability reduction method includes feeding pressurized air into an air separation module containing an oxygen separation membrane. The method includes contacting the separation membrane with the air feed, permeating oxygen from the air feed through the separation membrane, and producing nitrogen-enriched air from the air separation module as a result of removing oxygen from the air feed. The NEA from the air separation module is substantially cooled in a NEA flow heat exchanger and the substantially cooled, nitrogen-enriched air is fed into the fuel tank on board the aircraft. An aircraft fuel tank flammability reduction system includes a NEA flow heat exchanger configured to cool substantially the nitrogen-enriched air from the air separation module and a fuel tank on board the aircraft configured to receive the cooled nitrogen-enriched air.
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: May 3, 2016
    Assignee: THE BOEING COMPANY
    Inventors: Ivana Jojic, Donald R Snow, Jr., Alan Grim, Colin W Hart
  • Publication number: 20150360170
    Abstract: An aircraft fuel tank flammability reduction method includes feeding pressurized air into an air separation module containing a carbon membrane, the air feed exhibiting a normal pressure of no more than 55 psig. The method includes producing nitrogen-enriched air from the air separation module as a result of removing oxygen from the air feed. An aircraft fuel tank flammability reduction system includes a source for pressurized air, an air separation module configured to receive air feed from the pressurized air source, and a carbon membrane. The carbon membrane is configured to permeate oxygen from the air feed through the carbon membrane at a temperature of at least 120° C. (248° F.) and to produce nitrogen-enriched air from the air separation module as a result of removing oxygen from the air feed.
    Type: Application
    Filed: June 22, 2015
    Publication date: December 17, 2015
    Inventors: Barbara J. Evosevich, Ivana Jojic
  • Publication number: 20150344146
    Abstract: A fluid separation assembly and method are provided. The assembly has a hollow fiber bundle with a plurality of hollow fiber membranes. The assembly further has a pair of tubesheets, each encapsulating respective ends of the hollow fiber bundle. The assembly further has a plurality of radial through openings formed along a circumference of one or both of the tubesheets and radially through a body portion in one or both of the tubesheets. The radial through openings include center connected radial through openings and partial radial through openings, and intersect each, or substantially each, of the hollow fiber membranes. The assembly further has a housing surrounding the hollow fiber bundle and the tubesheets. The housing has a feed inlet port, a permeate outlet port, and a non-permeate outlet port. The feed inlet port and the non-permeate outlet port are in parallel alignment with a longitudinal central axis of the housing.
    Type: Application
    Filed: July 17, 2015
    Publication date: December 3, 2015
    Inventors: Brent Kenneth Theodore, Donald Ray Snow, JR., James P. Huang, Michael J. Robinson, Ivana Jojic, Benjamin Bikson
  • Patent number: 9084962
    Abstract: In an embodiment there is provided a fluid separation assembly. The assembly has a hollow fiber bundle with a plurality of hollow fiber membranes. The assembly further has a first tubesheet and a second tubesheet encapsulating respective ends of the hollow fiber bundle, wherein one of the tubesheets has a plurality of radial through openings formed in the tubesheet. The assembly further has a housing surrounding the hollow fiber bundle and the first and second tubesheets, the housing having a feed inlet port, a permeate outlet port, and a non-permeate outlet port. The feed gas, permeate gas, or non-permeate gas are introduced into or removed from the hollow fiber membranes via the plurality of radial through openings formed in the tubesheet, such that the radial through openings of the tubesheet intersect each or substantially each of the hollow fiber membranes.
    Type: Grant
    Filed: March 3, 2012
    Date of Patent: July 21, 2015
    Assignee: The Boeing Company
    Inventors: Brent Kenneth Theodore, Donald Ray Snow, Jr., James P. Huang, Michael J. Robinson, Ivana Jojic, Benjamin Bikson
  • Patent number: 9061249
    Abstract: An aircraft fuel tank flammability reduction method includes feeding pressurized air into an air separation module containing a carbon membrane, the air feed exhibiting a normal pressure of no more than 55 psig and the carbon membrane containing at least 95 weight percent carbon. The method includes producing nitrogen-enriched air from the air separation module as a result of removing oxygen from the air feed. An aircraft fuel tank flammability reduction system includes a source for pressurized air, an air separation module configured to receive air feed from the pressurized air source, and a carbon membrane containing at least 95 weight percent carbon. The carbon membrane is configured to permeate oxygen from the air feed through the carbon membrane at a temperature of at least 120° C. (248° F.) and to produce nitrogen-enriched air from the air separation module as a result of removing oxygen from the air feed.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: June 23, 2015
    Assignee: THE BOEING COMPANY
    Inventors: Barbara J. Evosevich, Ivana Jojic
  • Publication number: 20150027305
    Abstract: A gas separation method includes contacting a membrane filter with gas feed, permeating the gas from the gas feed through the membrane, and producing filtered gas from the filter. The filtered gas is produced from the filter as a result of the membrane removing any hydrocarbons containing six or more carbon atoms to produce a total of 0.001 ppm w/w or less. A gas separation method includes feeding gas into a filter containing a hollow fiber membrane that exhibits the property of resisting degradation due to exposure to hydrocarbons containing six or more carbon atoms. The filter exhibits a pressure drop across the membrane of less than 5 psi. The method includes feeding the filtered gas into a gas separation module that exhibits a susceptibility to degradation from exposure to hydrocarbons containing six or more carbon atoms.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventors: Barbara J Evosevich, Ivana Jojic
  • Publication number: 20150000523
    Abstract: An aircraft fuel tank flammability reduction method includes feeding pressurized air into an air separation module containing an oxygen separation membrane. The method includes contacting the separation membrane with the air feed, permeating oxygen from the air feed through the separation membrane, and producing nitrogen-enriched air from the air separation module as a result of removing oxygen from the air feed. The NEA from the air separation module is substantially cooled in a NEA flow heat exchanger and the substantially cooled, nitrogen-enriched air is fed into the fuel tank on board the aircraft. An aircraft fuel tank flammability reduction system includes a NEA flow heat exchanger configured to cool substantially the nitrogen-enriched air from the air separation module and a fuel tank on board the aircraft configured to receive the cooled nitrogen-enriched air.
    Type: Application
    Filed: September 4, 2014
    Publication date: January 1, 2015
    Inventors: Ivana Jojic, Donald R. Snow, JR., Alan Grim, Colin W Hart
  • Patent number: 8882886
    Abstract: An aircraft fuel tank flammability reduction method includes contacting a membrane filter with air feed, permeating oxygen and nitrogen from the air feed through the membrane, and producing filtered air from the filter. The filtered air is produced from the filter as a result of the membrane removing any hydrocarbons containing six or more carbon atoms to produce a total of 0.001 ppm w/w or less. An air separation method includes feeding air into a filter containing a hollow fiber membrane that exhibits the property of resisting degradation due to exposure to hydrocarbons containing six or more carbon atoms. The filter exhibits a pressure drop across the membrane of less than 5 psi. The method includes feeding the filtered air into an air separation module containing a hollow fiber membrane that exhibits a susceptibility to degradation from exposure to hydrocarbons containing six or more carbon atoms.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: November 11, 2014
    Assignee: The Boeing Company
    Inventors: Barbara J Evosevich, Ivana Jojic
  • Publication number: 20140116249
    Abstract: An aircraft fuel tank flammability reduction method includes contacting a membrane filter with air feed, permeating oxygen and nitrogen from the air feed through the membrane, and producing filtered air from the filter. The filtered air is produced from the filter as a result of the membrane removing any hydrocarbons containing six or more carbon atoms to produce a total of 0.001 ppm w/w or less. An air separation method includes feeding air into a filter containing a hollow fiber membrane that exhibits the property of resisting degradation due to exposure to hydrocarbons containing six or more carbon atoms. The filter exhibits a pressure drop across the membrane of less than 5 psi. The method includes feeding the filtered air into an air separation module containing a hollow fiber membrane that exhibits a susceptibility to degradation from exposure to hydrocarbons containing six or more carbon atoms.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: THE BOEING COMPANY
    Inventors: Barbara J. Evosevich, Ivana Jojic
  • Publication number: 20140053726
    Abstract: An aircraft fuel tank flammability reduction method includes feeding pressurized air into an air separation module containing a carbon membrane, the air feed exhibiting a normal pressure of no more than 55 psig and the carbon membrane containing at least 95 weight percent carbon. The method includes producing nitrogen-enriched air from the air separation module as a result of removing oxygen from the air feed. An aircraft fuel tank flammability reduction system includes a source for pressurized air, an air separation module configured to receive air feed from the pressurized air source, and a carbon membrane containing at least 95 weight percent carbon. The carbon membrane is configured to permeate oxygen from the air feed through the carbon membrane at a temperature of at least 120° C. (248° F.) and to produce nitrogen-enriched air from the air separation module as a result of removing oxygen from the air feed.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 27, 2014
    Inventors: Barbara J. Evosevich, Ivana Jojic