Patents by Inventor Iwan Kawrakow

Iwan Kawrakow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10026186
    Abstract: A phase correlation method (PCM) can be used for translational and/or rotational alignment of 3D medical images even in the presence of non-rigid deformations between first and second images of a registered volume of a patient.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: July 17, 2018
    Assignee: ViewRay Technologies, Inc.
    Inventors: Georgi Gerganov, Iwan Kawrakow
  • Patent number: 9750956
    Abstract: A target volume within a test object is irradiated according to an irradiation plan with a particle beam using a particle irradiation unit. The irradiation plan is determined in order to apply the energy of the particle beam in the target volume according to a predetermined dose distribution. In addition, a boundary condition is specified for at least one of the isoenergy layers and the irradiation plan is additionally specified such that the boundary condition is met for the at least one isoenergy layer. The boundary condition includes one or more of a minimum boundary energy, a maximum boundary energy, a minimum grid point number, a minimum total particle number, a minimum total dose, a minimum dose contribution to a total dose to be administered, a minimum contribution to a target function which is calculated for determining the irradiation plan, and a minimum dose compensation error.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: September 5, 2017
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Iwan Kawrakow, Johann Kim, Robert Neuhauser, Eike Rietzel, Oliver Thilmann
  • Patent number: 9289626
    Abstract: Disclosed herein are methods including calibrating a radiotherapy machine to identify an effective radiation source size of a radiation source contained within the radiotherapy machine, the radiation source having a nominal radiation source size, to improve accuracy of a predicted dose profile for one or more radiation beams from the radiation source to further improve accuracy of radiation dose calculation and treatment delivery.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: March 22, 2016
    Assignee: ViewRay Incorporated
    Inventors: Iwan Kawrakow, James F. Dempsey
  • Patent number: 9227083
    Abstract: A method and a device for regulating a therapeutic beam directed at an object are provided. The method includes displaying at least one multidimensional image data record encompassing at least one target area of the object. The method also includes determining the treatment beam dosage directed at the at least one target area, and recording and optionally visualizing an isoline or isosurface dependent on the treatment beam dosage in the at least one multidimensional image data record. The method includes adjusting the isoline or isosurface such that the isoline or isosurface approximates a contour of the target area as closely as possible or corresponds to the contour, and regulating the treatment beam dosage by evaluation of the adjusted isoline or isosurface.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: January 5, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventors: Mark Hastenteufel, Iwan Kawrakow, Christian Scholz
  • Publication number: 20150196781
    Abstract: A target volume within a test object is irradiated according to an irradiation plan with a particle beam using a particle irradiation unit. The irradiation plan is determined in order to apply the energy of the particle beam in the target volume according to a predetermined dose distribution. In addition, a boundary condition is specified for at least one of the isoenergy layers and the irradiation plan is additionally specified such that the boundary condition is met for the at least one isoenergy layer. The boundary condition includes one or more of a minimum boundary energy, a maximum boundary energy, a minimum grid point number, a minimum total particle number, a minimum total dose, a minimum dose contribution to a total dose to be administered, a minimum contribution to a target function which is calculated for determining the irradiation plan, and a minimum dose compensation error.
    Type: Application
    Filed: June 7, 2013
    Publication date: July 16, 2015
    Inventors: Jörg Bohsung, Thilo Elsässer, Sven Oliver Grözinger, Iwan Kawrakow, Johann Kim, Robert Neuhauser, Eike Rietzel, Oliver Thilmann
  • Publication number: 20150154756
    Abstract: A phase correlation method (PCM) can be used for translational and/or rotational alignment of 3D medical images even in the presence of non-rigid deformations between first and second images of a registered volume of a patient.
    Type: Application
    Filed: December 3, 2014
    Publication date: June 4, 2015
    Inventors: Georgi Gerganov, Iwan Kawrakow
  • Patent number: 9014338
    Abstract: A method for determining a 4D plan for carrying out intensity-modulated radiation therapy of a target volume subject to irregular periodic motion, with a radiation therapy apparatus is provided. The method includes selecting positions of a radiation source. The number of positions is selected to be identical in all 3D radiation therapy plans. The method also includes selecting a number of respective aperture settings assigned to a respective position of the radiation source to be identical in all 3D radiation therapy plans. A geometrical, temporal, and/or dynamic restriction that restricts a change of the aperture from one aperture setting to another aperture setting is predetermined, and the 3D radiation therapy plans are determined such that the 3D radiation therapy plans fulfill predetermined restrictions for aperture settings in each case.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: April 21, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Boettger, Johannes Fieres, Alexander Gemmel, Iwan Kawrakow
  • Publication number: 20130177135
    Abstract: A method for determining a 4D plan for carrying out intensity-modulated radiation therapy of a target volume subject to irregular periodic motion, with a radiation therapy apparatus is provided. The method includes selecting positions of a radiation source. The number of positions is selected to be identical in all 3D radiation therapy plans. The method also includes selecting a number of respective aperture settings assigned to a respective position of the radiation source to be identical in all 3D radiation therapy plans. A geometrical, temporal, and/or dynamic restriction that restricts a change of the aperture from one aperture setting to another aperture setting is predetermined, and the 3D radiation therapy plans are determined such that the 3D radiation therapy plans fulfill predetermined restrictions for aperture settings in each case.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 11, 2013
    Inventors: Thomas Boettger, Johannes Fieres, Alexander Gemmel, Iwan Kawrakow
  • Publication number: 20130079579
    Abstract: A method and a device for regulating a therapeutic beam directed at an object are provided. The method includes displaying at least one multidimensional image data record encompassing at least one target area of the object. The method also includes determining the treatment beam dosage directed at the at lest one target area, and recording and optionally visualizing an isoline or isosurface dependent on the treatment beam dosage in the at least one multidimensional image data record. The method includes adjusting the isoline or isosurface such that the isoline or isosurface approximates a contour of the target area as closely as possible or corresponds to the contour, and regulating the treatment beam dosage by evaluation of the adjusted isoline or isosurface.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 28, 2013
    Inventors: Mark Hastenteufel, Iwan Kawrakow, Christian Scholz