Patents by Inventor Iyappan Ramachandran

Iyappan Ramachandran has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200274570
    Abstract: An electronic device may include control circuitry, sensors, and wireless circuitry having antennas. The sensors may generate sensor data that is used by the control circuitry to identify an operating environment for the device. The sensor data may include a grip map generated by a touch-sensitive display, infrared facial recognition image signals or other image signals, an angle of arrival of sound received by a set of microphones, impedance data from an impedance sensor, and any other desired sensor data. The control circuitry may use the sensor data, radio-frequency spatial ranging data, information about whether audio is being played over an ear speaker, and/or information about communications protocols in use to identify the operating environment. The control circuitry may adjust antenna settings for the wireless circuitry based on the identified operating environment to ensure that the antennas operate with satisfactory antenna efficiency regardless of operating conditions.
    Type: Application
    Filed: May 12, 2020
    Publication date: August 27, 2020
    Inventors: Liang Han, Matthew A. Mow, Mattia Pascolini, Ruben Caballero, Thomas E. Biedka, Yuancheng Xu, Iyappan Ramachandran
  • Patent number: 10693516
    Abstract: An electronic device may include control circuitry, sensors, and wireless circuitry having antennas. The sensors may generate sensor data that is used by the control circuitry to identify an operating environment for the device. The sensor data may include a grip map generated by a touch-sensitive display, infrared facial recognition image signals or other image signals, an angle of arrival of sound received by a set of microphones, impedance data from an impedance sensor, and any other desired sensor data. The control circuitry may use the sensor data, radio-frequency spatial ranging data, information about whether audio is being played over an ear speaker, and/or information about communications protocols in use to identify the operating environment. The control circuitry may adjust antenna settings for the wireless circuitry based on the identified operating environment to ensure that the antennas operate with satisfactory antenna efficiency regardless of operating conditions.
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: June 23, 2020
    Assignee: Apple Inc.
    Inventors: Liang Han, Matthew A. Mow, Mattia Pascolini, Ruben Caballero, Thomas E. Biedka, Yuancheng Xu, Iyappan Ramachandran
  • Publication number: 20200104038
    Abstract: In some embodiments, an electronic device performs an action in response to detection of a sequence of one or more motion gestures. Motion gesture information of a first electronic device optionally includes a first portion representing a respective attitude of the first electronic device relative to a frame of reference and a second portion that includes movement of the first electronic device from the respective attitude of the first electronic device. In accordance with a determination that the movement of the first electronic device during the second portion of the motion gesture meets movement criteria for a movement gesture that corresponds to the respective attitude of the first electronic device, a process is initiated to control the first electronic device or a second electronic device in accordance with the second portion of the motion gesture.
    Type: Application
    Filed: July 19, 2019
    Publication date: April 2, 2020
    Inventors: Raghuram C. KAMATH, Harneet Singh OBEROI, Iyappan RAMACHANDRAN, Jaemyung LIM, Mohammad SHOKOOHI-YEKTA
  • Publication number: 20190393918
    Abstract: An electronic device may include control circuitry, sensors, and wireless circuitry having antennas. The sensors may generate sensor data that is used by the control circuitry to identify an operating environment for the device. The sensor data may include a grip map generated by a touch-sensitive display, infrared facial recognition image signals or other image signals, an angle of arrival of sound received by a set of microphones, impedance data from an impedance sensor, and any other desired sensor data. The control circuitry may use the sensor data, radio-frequency spatial ranging data, information about whether audio is being played over an ear speaker, and/or information about communications protocols in use to identify the operating environment. The control circuitry may adjust antenna settings for the wireless circuitry based on the identified operating environment to ensure that the antennas operate with satisfactory antenna efficiency regardless of operating conditions.
    Type: Application
    Filed: June 25, 2018
    Publication date: December 26, 2019
    Inventors: Liang Han, Matthew A. Mow, Mattia Pascolini, Ruben Caballero, Thomas E. Biedka, Yuancheng Xu, Iyappan Ramachandran
  • Patent number: 10381715
    Abstract: An electronic device may include an antenna having a resonating element, an antenna ground, and a feed. First and second tunable components may be coupled to the resonating element. Adjustable matching circuitry may be coupled to the feed. Control circuitry may use the first tunable component to tune a midband antenna resonance when sensor circuitry identifies that the device is being held in a right hand and may use the second tunable component to tune the midband resonance when the sensor circuitry identifies that the device is being held in a left hand. For tuning a low band resonance, the control circuitry may place the antenna in different tuning states by sequentially adjusting a selected one of the matching circuitry and the tunable components, potentially reverting to a previous tuning state at each step in the sequence. This may ensure that antenna efficiency is satisfactory regardless of antenna loading conditions.
    Type: Grant
    Filed: May 23, 2017
    Date of Patent: August 13, 2019
    Assignee: Apple Inc.
    Inventors: Liang Han, Thomas E. Biedka, Matthew A. Mow, Iyappan Ramachandran, Mattia Pascolini, Xu Han, Hao Xu, Jennifer M. Edwards, Salih Yarga, Yijun Zhou
  • Publication number: 20180342794
    Abstract: An electronic device may include an antenna having a resonating element, an antenna ground, and a feed. First and second tunable components may be coupled to the resonating element. Adjustable matching circuitry may be coupled to the feed. Control circuitry may use the first tunable component to tune a midband antenna resonance when sensor circuitry identifies that the device is being held in a right hand and may use the second tunable component to tune the midband resonance when the sensor circuitry identifies that the device is being held in a left hand. For tuning a low band resonance, the control circuitry may place the antenna in different tuning states by sequentially adjusting a selected one of the matching circuitry and the tunable components, potentially reverting to a previous tuning state at each step in the sequence. This may ensure that antenna efficiency is satisfactory regardless of antenna loading conditions.
    Type: Application
    Filed: May 23, 2017
    Publication date: November 29, 2018
    Inventors: Liang Han, Thomas E. Biedka, Matthew A. Mow, Iyappan Ramachandran, Mattia Pascolini, Xu Han, Hao Xu, Jennifer M. Edwards, Salih Yarga, Yijun Zhou
  • Publication number: 20050135229
    Abstract: A method and system communicates ultra wide bandwidth signals using orthogonal frequency division multiplexing modulation. Tones are received over an ultra wide bandwidth channel. The tones were generated from a single frequency interleaved input symbol subjected to spreading and modulation. The received tones are de-spreaded, and frequency de-interleaving is applied to the de-spreaded tones to recover the single input symbol.
    Type: Application
    Filed: December 19, 2003
    Publication date: June 23, 2005
    Inventors: Andreas Molisch, Yves-Paul Nakache, Philip Orlik, Iyappan Ramachandran
  • Publication number: 20050135457
    Abstract: A method and system communicates ultra wide bandwidth signals using orthogonal frequency division multiplexing modulation. QPSK input symbols are frequency interleaved. The frequency interleaved symbols are spread over a plurality of tones, and the tones are modulated for transmission over an ultra wide bandwidth channel. When the tones are received, the received tones can be de-spreaded to recover the input symbols.
    Type: Application
    Filed: December 19, 2003
    Publication date: June 23, 2005
    Inventors: Andreas Molisch, Yves-Paul Nakache, Philip Orlik, Iyappan Ramachandran