Patents by Inventor Izumi Fusegawa

Izumi Fusegawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6565822
    Abstract: An epitaxial silicon wafer, which has no projections having a size of 100 nm or more and a height of 5 nm or more on an epitaxial layer, and a method for producing an epitaxial silicon wafer, wherein a single crystal ingot containing no I-region is grown when a silicon single crystal is grown by the CZ method, and an epitaxial layer is deposited on a silicon wafer sliced from the single crystal ingot and containing no I-region for the entire surface. An epitaxial wafer of high quality with no projection-like surface distortion observed as particles on an epi-layer surface is provided by forming a wafer having no I-region for the entire surface from a single crystal and depositing an epitaxial layer thereon, and a single crystal having no I-region for entire plane is produced with good yield and high productivity, thereby improving productivity of epi-wafers and realizing cost reduction.
    Type: Grant
    Filed: September 21, 2000
    Date of Patent: May 20, 2003
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Ryoji Hoshi, Susumu Sonokawa, Masahiro Sakurada, Tomohiko Ohta, Izumi Fusegawa
  • Publication number: 20030089300
    Abstract: The present invention provides an apparatus and a method for producing a silicon semiconductor single crystal which can stabilize and homogenize an amount of precipitated oxygen in the direction of the crystal growth axis when growing a silicon semiconductor single crystal. The apparatus for producing a silicon semiconductor single crystal by the Czochralski method comprises a main growth furnace having a crucible retaining silicon melt disposed therein for growing a silicon semiconductor single crystal, and an upper growth furnace for housing therein and cooling the silicon semiconductor single crystal pulled from the silicon melt, wherein the upper growth furnace communicated to a ceiling section of the main growth furnace is provided with an upper insulating member for surrounding a pulled silicon semiconductor single crystal.
    Type: Application
    Filed: August 20, 2002
    Publication date: May 15, 2003
    Inventors: Ryoji Hoshi, Takahiro Yanagimachi, Izumi Fusegawa, Tomohiko Ohta, Yuuichi Miyahara, Tetsuya Igarashi
  • Publication number: 20030070605
    Abstract: An apparatus for growing a single crystal (20) comprising at least a main chamber (1) enclosing a crucible (5, 6) for accommodating a raw material melt (4) and a heater (7) for heating the raw material melt and a pulling chamber (2) continuously provided above the main chamber, into which a grown single crystal is pulled and stored, wherein the apparatus further comprises a cooling cylinder (11) that extends at least from a ceiling of the main chamber toward a raw material melt surface so as to surround a single crystal under pulling (3) and is forcibly cooled with a cooling medium, and an auxiliary cooling member (13) extending below the cooling cylinder and having a cylindrical shape or a shape tapered toward the downward direction. There is provided an apparatus for growing a single crystal that can exert cooling effect on a grown single crystal to the maximum extent so as to accelerate the crystal growth rate and safely produce a single crystal without leakage of cooling medium due to breakage etc.
    Type: Application
    Filed: September 21, 2001
    Publication date: April 17, 2003
    Inventors: Ryoji Hoshi, Koji Kitagawa, Izumi Fusegawa, Tomohiko Ohta
  • Publication number: 20020157598
    Abstract: The present invention provides a silicon wafer sliced from a silicon single crystal ingot grown by the Czochralski method under such conditions that V-rich region should become dominant, wherein count number of particles having a size of 0.1 &mgr;m or more is 1 count/cm2 or less when particles are counted by using a particle counter and a method for producing a silicon single crystal. Thus, there is provided a production technique that can improve productivity and reduce cost for high quality silicon wafers of excellent device characteristics by further reducing density and size of defects such as COP.
    Type: Application
    Filed: November 23, 2001
    Publication date: October 31, 2002
    Inventors: Ryoji Hoshi, Izumi Fusegawa, Tomohiko Ohta, Shigemaru Maeda
  • Publication number: 20020157600
    Abstract: In a method manufacturing a silicon single crystal 8 according to an MCZ method, a flow rate of an inert gas flowing in a growth furnace 1 during growth of the silicon single crystal 8 and/or a pressure in the growth furnace 1 is altered according to a pulling amount of the silicon single crystal 8 to adjust an interstitial oxygen concentration therein. By altering a flow rate of an inert gas flowing in the growth furnace or a pressure therein, an amount of oxygen evaporating as an oxide from a surface of a silicon melt 10 in the vicinity of a crystal growth interface can be easily adjusted, and thereby, an oxygen amount included in the silicon melt 10 can be controlled with ease.
    Type: Application
    Filed: October 24, 2001
    Publication date: October 31, 2002
    Inventors: Izumi Fusegawa, Ryoji Hoshi, Kouichi Inokoshi, Tomohiko Ohta
  • Patent number: 6423285
    Abstract: In a method for producing a silicon single crystal by growing a single crystal ingot while a magnetic field perpendicular to a crystal growth axis is applied to a silicon melt contained in a quartz crucible during pulling of the single crystal from the melt contained in the quartz crucible, the crystal growth is performed so that one of a low temperature region and a high temperature region generated at a surface of the silicon melt contained in the crucible should always cover a solid-liquid interface of the crystal growth, or a ratio of vertical magnetic field component to horizontal magnetic field component for magnetic field strength at the crystal center of the surface of the silicon melt contained in the quartz crucible is controlled to be 0.3 or more and 0.5 or less.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: July 23, 2002
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Kirio Itoi, Eiichi Iino, Tohru Ishizuka, Tomohiko Ohta, Izumi Fusegawa
  • Patent number: 6387466
    Abstract: The high quality silicon wafer of large diameter is invented by mainly paying attention to the particles ascribed to the crystal and the wafer is optimal for manufacturing ultra highly integrated devices. The silicon wafer is of diameter of 300 mm and larger sliced from a single-crystal silicon ingot pulled by CZ method, the surface is mirror-polished and cleaned with ammonia based cleaning solution, and the number of particles of 0.083 &mgr;m and larger in size detected on its main surface is 120 and smaller and/or particles of 0.090 &mgr;m and larger in size is smaller than 80.
    Type: Grant
    Filed: October 28, 1999
    Date of Patent: May 14, 2002
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Izumi Fusegawa, Masakazu Sato
  • Patent number: 6153009
    Abstract: In a Czochralski method for producing a silicon single crystal by growing the crystal, the pulling rate of the single crystal is gradually increased during formation of a tail part after formation of a predetermined or constant diameter part of the single crystal. The length t of the tail part is defined to be a or more, where a represents a distance from the tip end of the tail part to a position of an extraordinary oxygen precipitation area when the tail part is formed after the predetermined or constant diameter part is grown. Productivity and yield of the silicon single crystal are improved by preventing rapid change in temperature while the single crystal is separated from the melt in the tailing process, to suppress generation of an area where the amount of precipitated oxygen is extraordinarily large and an OSF ring due to rapid increase in temperature when the tail part is formed, in the predetermined or constant diameter part near the tail part.
    Type: Grant
    Filed: March 16, 1999
    Date of Patent: November 28, 2000
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Toshiharu Uesugi, Toshio Hisaichi, Izumi Fusegawa, Tomohiko Ohta, Tetsuya Igarashi, Tetsuhiro Oda
  • Patent number: 6117231
    Abstract: A silicon wafer sliced from a silicon single crystal having a low oxygen concentration is used as an epitaxial substrate to provide semiconductor silicon single crystal wafers exhibiting good electrical characteristics at a low cost. A semiconductor silicon single crystal having a resistivity in a range of 0.005 to 0.02 .OMEGA..multidot.cm and an oxygen concentration of 12.times.10.sup.17 atoms/cm.sup.3 (ASTM'79) or less is manufactured by a Czochralski (CZ) method. The resulting silicon single crystal is shaped into a silicon single crystal substrate on which a silicon single crystal is epitaxially grown.
    Type: Grant
    Filed: April 13, 1999
    Date of Patent: September 12, 2000
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Izumi Fusegawa, Toshirou Hayashi, Ryoji Hoshi, Tomohiko Ohta
  • Patent number: 5938841
    Abstract: A novel device for producing a single crystal by the CZ or MCZ method is provided, which comprising a crucible for containing silicon melt therein, a wire reel and a wire for pulling a single crystal, a motor and a rotation shaft for rotating the crucible, a speed change device being inserted between the motor and the rotation shaft, and, if necessary, a magnetic field generator, by which the magnetic field is applied to the melt. According to the device for producing a single crystal, the rotation accuracy of a crucible can be improved, so that the concentrations of impurities in the pulled single crystal can be highly precisely controlled.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: August 17, 1999
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Kouji Kitagawa, Kouji Mizuishi, Masahiko Urano, Kenji Araki, Eiichi Iino, Izumi Fusegawa
  • Patent number: 5871583
    Abstract: An apparatus for producing a silicon single crystal grown by the Czochralski method includes a main chamber having a round soulder interconnecting the upper end of a side wall and the lower end of a neck of the main chamber. The round shoulder has an inside surface so profiled as to form a portion of the periphery of an ellipse drawn about two foci which are composed of the upper end of a heater and a point of the longitudinal axis of a silicon single crystal being grown. The inside surface has a low emissivity. With the apparatus thus constructed, a silicon single crystal having a high dielectric breakdown strength of oxide film (SiO.sub.2) can be produced in a stable manner with high yield and productivity.
    Type: Grant
    Filed: December 26, 1996
    Date of Patent: February 16, 1999
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Kiyotaka Takano, Izumi Fusegawa, Hirotoshi Yamagishi
  • Patent number: 5851283
    Abstract: A single crystal production apparatus based on an HMCZ method for production a large-diametered single crystal having a uniform microscopic oxygen concentration distribution in its crystal growth direction to thereby provide a wafer having a high in-plane uniformity of oxygen concentration distribution. In the single crystal production apparatus based on the HMCZ method, when B denotes a vertical position of the bottom surface of a melt within a crucible and L denotes the depth of the melt at the time of starting crystal pulling operation, a vertical position of the coil central axis Cc of superconducting electromagnets 12 and 15 is controlled to be a proper value included in a range from a position below the position B by {(1/3).times.L} to a position above the position B by {(1/3).times.L} to pull the single crystal.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: December 22, 1998
    Assignee: Shin-Etsu Handotai Co. Ltd.
    Inventors: Ryouji Hoshi, Masashi Sonokawa, Izumi Fusegawa, Tomohiko Ohta
  • Patent number: 5834322
    Abstract: The method of this invention for heat treatment of a Si single crystal grown by the Czochralski method at a speed of pull of not less than 0.8 mm/min., characterized by heat-treating at a temperature in the range of from 1,150.degree. C. to 1,280.degree. C. a wafer cut out of the Si single crystal thereby producing a Si wafer excellent in oxide film dielectric breakdown voltage characteristic due to elimination of crystal defects. Consequently, this invention ensures production of LSI in a high yield.
    Type: Grant
    Filed: August 22, 1997
    Date of Patent: November 10, 1998
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Izumi Fusegawa, Hirotoshi Yamagishi, Nobuyoshi Fujimaki, Yukio Karasawa
  • Patent number: 5766346
    Abstract: An apparatus for producing a silicon single crystal by the MCZ method is disclosed in which electrodes and magnets are arranged so as to make such a condition that a line of magnetic force passing through the central axis of the crucible and a horizontal electric current which results from the supply of a direct current to the heater forms a counterclockwise angle of more than 0.degree. and less than 180.degree. on the basis of the condition where the direction of the line of magnetic force coincides with the direction of the horizontal electric current.
    Type: Grant
    Filed: December 5, 1996
    Date of Patent: June 16, 1998
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Toshirou Hayashi, Ryouji Hoshi, Izumi Fusegawa, Tomohiko Ohta
  • Patent number: 5725661
    Abstract: An equipment for producing silicon single crystals based on an MCZ method, which enables an operator to be protected from dangerous exposure to magnetic field without involving increase in the size of the silicon single crystal production equipment. In the silicon single crystal production equipment based on the MCZ method, a growth furnace control apparatus for control of a pulling apparatus is located away from the pulling apparatus by a predetermined distance so that the intensity of magnetic field immediately close to the growth furnace control apparatus can become 300 gausses or less. A monitoring camera for observing the growing condition of the silicon single crystal is mounted to a window 5a of a growth furnace to be operatively connected to a monitor of the growth furnace control apparatus and to cause the growth furnace control apparatus to control the pulling apparatus on a remote control basis.
    Type: Grant
    Filed: July 1, 1996
    Date of Patent: March 10, 1998
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Izumi Fusegawa, Toshiro Hayashi, Tomohiko Ohta, Masayuki Arai
  • Patent number: 5720809
    Abstract: A double-wall crucible is disclosed which is constructed by coaxially disposing a cylindrical partition wall in an outer crucible for holding a molten mass of silicon as a raw material and operated by heating the outer crucible and meanwhile supplying the raw material silicon to the gap between the outer crucible and the cylindrical partition wall and introducing the consequently produced molten mass of silicon to the interior of the cylindrical partition wall through a passage below the level of the molten mass of silicon interconnecting the outer crucible and the inner side of the cylindrical partition wall and meanwhile pulling a single crystal bar from the molten mass of silicon in the cylindrical partition wall. In this double-wall crucible, at least the cylindrical partition wall is formed of quartz glass having a hydroxyl group (OH group) content of not more than 30 ppm.
    Type: Grant
    Filed: August 2, 1995
    Date of Patent: February 24, 1998
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Eiichi Iino, Kiyotaka Takano, Izumi Fusegawa, Hirotoshi Yamagishi
  • Patent number: 5688319
    Abstract: The evaluation of the oxide film dielectric breakdown voltage of a silicon semiconductor single crystal is caried out by cutting a wafer out of the single crystal rod, etching the surface of the wafer with the mixed solution of hydrofluoric acid and nitric acid thereby relieving the wafer of strain, then etching the surface of the wafer with the mixed solution of K.sub.2 Cr.sub.2 O.sub.7, hydrofluoric acid, and water therby inducing occurrence of pits and scale-like patterns on the surface, determining the density of the scale-like patterns, and computing the oxide film dielectric breakdown voltage by making use of the correlating between the density of scale-like patterns and the oxide film dielectric breakdown voltage. This fact established the method of this invention to be capable of effecting an evaluation equivalent to the evaluation of the oxide film dielectric breakdown voltage of a PW wafer prepared from the single crystal rod.
    Type: Grant
    Filed: November 22, 1991
    Date of Patent: November 18, 1997
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Izumi Fusegawa, Hirotoshi Yamagishi, Nobuyoshi Fujimaki, Yukio Karasawa
  • Patent number: 5534112
    Abstract: The evaluation of the oxide film dielectric breakdown voltage of a silicon semiconductor single crystal is caried out by cutting a wafer out of the single crystal rod, etching the surface of the wafer with the mixed solution of hydrofluoric acid and nitric acid thereby relieving the wafer of strain, then etching the surface of the wafer with the mixed solution of K.sub.2 Cr.sub.2 O.sub.7, hydrofluoric acid, and water thereby inducing occurrence of pits and scale-like patterns on the surface, determining the density of the scale-like patterns, and computing the oxide film dielectric breakdown voltage by making use of the correlating between the density of scale-like patterns and the oxide film dielectric breakdown voltage. This fact established the method of this invention to be capable of effecting an evaluation equivalent to the evaluation of the oxide film dielectric breakdown voltage of a PW wafer prepared from the single crystal rod.
    Type: Grant
    Filed: May 5, 1994
    Date of Patent: July 9, 1996
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Izumi Fusegawa, Hirotoshi Yamagishi, Nobuyoshi Fujimaki, Yukio Karasawa
  • Patent number: 5501172
    Abstract: The present invention provides a method of growing silicon single crystals by the Czochralski method, wherein the strength of a neck may be increased so as to delete the risk of severance thereof in a simple and easy way without the use of mechanically complex devices and thereby growing of a single crystal of a larger diameter and heavy weight is made practically possible.The method comprises the steps of: a single crystal being so grown from a seed crystal that the diameter of said single crystal gets gradually narrower until the length of a seed taper reaches 2.5 to 15 times the sectional size of the seed crystal; the diameter of a long near-cylindrical neck following the seed taper being so regulated that said diameter may be 0.09 to 0.9 times the sectional size of the seed crystal and 2.
    Type: Grant
    Filed: February 28, 1995
    Date of Patent: March 26, 1996
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Toshinari Murai, Eiichi Iino, Hideo Arai, Izumi Fusegawa, Hirotoshi Yamagishi
  • Patent number: 5462010
    Abstract: An apparatus for continuously supplying granular polycrystal silicon to a crucible of a semiconductor single crystal pulling apparatus, comprising a funnel-shaped tank having a relatively large capacity, a main hopper having a relatively small capacity and weight, a subhopper having an intermediate capacity and weight and providing a passage from said tank to said main hopper, and a weight sensor for detecting the weight of the main hopper, wherein the overall weight of the main hopper is measured to obtain the flow rate (supply rate) of the granular polycrystal silicon.
    Type: Grant
    Filed: October 14, 1992
    Date of Patent: October 31, 1995
    Assignee: Shin-Etsu Handotai Co., Ltd.
    Inventors: Kiyotaka Takano, Izumi Fusegawa, Hirotoshi Yamagishi, Koji Mizuishi, Katsuhiko Ogino