Patents by Inventor Izumi Hirabayashi

Izumi Hirabayashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7919434
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 5, 2011
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Publication number: 20100204049
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Application
    Filed: April 21, 2010
    Publication date: August 12, 2010
    Inventors: Takeshi ARAKI, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 7732376
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: June 8, 2010
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Publication number: 20100113281
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Application
    Filed: August 31, 2009
    Publication date: May 6, 2010
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 7691786
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Grant
    Filed: March 3, 2008
    Date of Patent: April 6, 2010
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 7615515
    Abstract: An oxide superconductor includes a main component represented by the following formula: LnBa2Cu3O7-x, where Ln comprises two or more types of elements selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, and Y, and a content of each element is 10 to 90 mol %, and fluorine at a molar ratio of 10?2 to 10?6 with respect to copper.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: November 10, 2009
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Publication number: 20080274895
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Application
    Filed: March 3, 2008
    Publication date: November 6, 2008
    Inventors: Takeshi ARAKI, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 7361627
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: April 22, 2008
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Publication number: 20070128735
    Abstract: A method of fabrication of an RE-Ba-Cu—O-based oxide superconductor, characterized by using an RE-Ba-O-based compound (RE being one type or two types or more of rare earth elements) and a Ba-Cu-O-based material for liquid phase as a starting material, melting the material for liquid phase, then growing the crystal.
    Type: Application
    Filed: July 12, 2005
    Publication date: June 7, 2007
    Applicant: INTERNATIONAL SUPERCONDUCTIVITY TECHNOLOGY CENTER, THE JURIDICAL FOUNDATION
    Inventors: Naomichi Sakai, Anming Hu, Shinya Nariki, Masato Murakami, Izumi Hirabayashi
  • Patent number: 7160820
    Abstract: There is provided a process for preparing a composite material of an oxide crystal film and a substrate by forming a Y123 type oxide crystal film from a solution phase on a substrate using a liquid phase method, wherein problems such as cracking of the oxide crystal film, separation of the oxide crystal film from the substrate, and development of a reaction layer between the substrate and the solution can be minimized. The solvent for forming the solution phase uses either a BaO—CuO—BaF2 system or a BaO—CuO—Ag—BaF2 system, and when the substrate with a seed crystal film bonded to the surface is brought in contact with the solution to form (grow) the oxide crystal film on the substrate, the temperature of the solution is controlled to a temperature of no more than 850° C.
    Type: Grant
    Filed: May 15, 2002
    Date of Patent: January 9, 2007
    Assignees: International Superconductivity Technology Center, the Juridical Foundation, Fujikura Ltd.
    Inventors: Toshihiro Suga, Yasuji Yamada, Toshihiko Maeda, Seok Beom Kim, Haruhiko Kurosaki, Yutaka Yamada, Izumi Hirabayashi, Yasuhiro Iijima, Tomonori Watanabe, Hisashi Yoshino, Koji Muranaka
  • Publication number: 20060199741
    Abstract: There is provided is a method of manufacturing a superconductor layer, including preparing a coating solution by dissolving trifluoroacetates of at least one metal selected from the group consisting of yttrium and lanthanoids, barium, and copper in a solvent, coating a main surface of a substrate with the coating solution to form a coating film, subjecting the coating film to a calcining process in an atmosphere containing oxygen, and subjecting the coating film after the calcining process to a firing process in an atmosphere containing water vapor at a temperature higher than that at the calcining process. The calcining process is carried out such that the coating film after the calcining process and before the firing process have an average CuO particle diameter equal to or less than 25 nm.
    Type: Application
    Filed: May 3, 2006
    Publication date: September 7, 2006
    Inventors: Takeshi Araki, Toshiharu Niwa, Takemi Muroga, Yutaka Yamada, Izumi Hirabayashi
  • Publication number: 20060153969
    Abstract: The present invention relates to a method of preparing an oxide superconducting film, the method includes reacting a metal acetate containing metal M selected from the group consisting of lanthanum, neodymium and samarium with fluorocarboxylic acid having not less than three carbon atoms, reacting barium acetate with fluorocarboxylic acid having two carbon atoms, reacting copper acetate with fluorocarboxylic acid having not less than two carbon atoms, respectively, followed by refining reaction products, dissolving the reaction products in methanol such that a molar ratio of the metal M, barium and copper is 1:2:3 to prepare a coating solution, and coating a substrate with the coating solution to form a gel film, followed by calcining and firing the gel film to prepare an oxide superconducting film.
    Type: Application
    Filed: February 16, 2006
    Publication date: July 13, 2006
    Applicants: KABUSHIKI KAISHA TOSHIBA, International Superconductivity Technology Ctr.
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 7069065
    Abstract: There is provided is a method of manufacturing a superconductor layer, including preparing a coating solution by dissolving trifluoroacetates of at least one metal selected from the group consisting of yttrium and lanthanoids, barium, and copper in a solvent, coating a main surface of a substrate with the coating solution to form a coating film, subjecting the coating film to a calcining process in an atmosphere containing oxygen, and subjecting the coating film after the calcining process to a firing process in an atmosphere containing water vapor at a temperature higher than that at the calcining process. The calcining process is carried out such that the coating film after the calcining process and before the firing process have an average CuO particle diameter equal to or less than 25 nm.
    Type: Grant
    Filed: April 7, 2004
    Date of Patent: June 27, 2006
    Assignees: Kabushiki Kaisha Toshiba, Chubu Electric Power Co., Inc., Hitachi Cable Ltd., International Superconductivity Technology Center
    Inventors: Takeshi Araki, Toshiharu Niwa, Takemi Muroga, Yutaka Yamada, Izumi Hirabayashi
  • Publication number: 20060058195
    Abstract: An oxide superconductor includes a main component represented by the following formula: LnBa2Cu3O7-x, where Ln comprises two or more types of elements selected from the group consisting of Gd, Tb, Dy, Ho, Er, Tm, and Y, and a content of each element is 10 to 90 mol %, and fluorine at a molar ratio of 10?2 to 10?6 with respect to copper.
    Type: Application
    Filed: September 15, 2005
    Publication date: March 16, 2006
    Inventors: Takeshi Araki, Koichi Nakao, Izumi Hirabayashi
  • Patent number: 6821930
    Abstract: An aqueous solution of mixed metal acetate including one kind or more of element selected from lanthanide series and yttrium, barium and copper is mixed with trifluoroacetic acid to prepare a solution of mixed metal trifluoroacetate. From a solution of mixed metal trifluoroacetate obtained thus, purified mixed metal trifluoroacetate of which total content of water and acetic acid is 2% by weight or less is prepared. With purified mixed metal trifluoroacetate, an oxide superconductor of excellent performance may be prepared.
    Type: Grant
    Filed: May 20, 2003
    Date of Patent: November 23, 2004
    Assignees: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center
    Inventors: Takeshi Araki, Katsuya Yamagiwa, Izumi Hirabayashi
  • Publication number: 20040214450
    Abstract: There is provided a process for preparing a composite material of an oxide crystal film and a substrate by forming a Y123 type oxide crystal film from a solution phase on a substrate using a liquid phase method, wherein problems such as cracking of the oxide crystal film, separation of the oxide crystal film from the substrate, and development of a reaction layer between the substrate and the solution can be minimized. The solvent for forming the solution phase uses either a BaO—CuO—BaF2 system or a BaO—CuO—Ag—BaF2 system, and when the substrate with a seed crystal film bonded to the surface is brought in contact with the solution to form (grow) the oxide crystal film on the substrate, the temperature of the solution is controlled to a temperature of no more than 850° C.
    Type: Application
    Filed: June 7, 2004
    Publication date: October 28, 2004
    Inventors: Toshihiro Suga, Yasuji Yamada, Toshihiko Maeda, Seok Beom Kim, Haruhiko Kurosaki, Yutaka Yamada, Izumi Hirabayashi, Yasuhiro Iijima, Tomonori Watanabe, Hisashi Yoshino, Koji Muranaka
  • Publication number: 20040192559
    Abstract: There is provided is a method of manufacturing a superconductor layer, including preparing a coating solution by dissolving trifluoroacetates of at least one metal selected from the group consisting of yttrium and lanthanoids, barium, and copper in a solvent, coating a main surface of a substrate with the coating solution to form a coating film, subjecting the coating film to a calcining process in an atmosphere containing oxygen, and subjecting the coating film after the calcining process to a firing process in an atmosphere containing water vapor at a temperature higher than that at the calcining process. The calcining process is carried out such that the coating film after the calcining process and before the firing process have an average CuO particle diameter equal to or less than 25 nm.
    Type: Application
    Filed: April 7, 2004
    Publication date: September 30, 2004
    Applicants: KABUSHIKI KAISHA TOSHIBA, CHUBU ELECTRIC POWER CO., INC., HITACHI CABLE LTD., International Superconductivity Technology Center
    Inventors: Takeshi Araki, Toshiharu Niwa, Takemi Muroga, Yutaka Yamada, Izumi Hirabayashi
  • Publication number: 20040026118
    Abstract: An oxide superconducting wire composed of a metal substrate, an intermediate layer vapor-deposited by an ion beam assisted deposition method (IBAD method) on the metal substrate, a CeO2 cap layer vapor-deposited on the intermediate layer by the PLD method or another such method, and an oxide superconducting film formed on the cap layer, wherein the thickness of the intermediate layer is no more than 2000 nm, and the thickness of the cap layer is at least 50 nm. The time it takes to form a film by the IBAD method can be shortened, and the orientation of the resulting superconducting film can be improved, by reducing the thickness of the intermediate layer manufactured by the IBAD method as above and increasing the thickness of the cap layer. The oxide superconducting wire can be obtained at low cost and with high critical current density.
    Type: Application
    Filed: August 4, 2003
    Publication date: February 12, 2004
    Inventors: Takemi Muroga, Yutaka Yamada, Takeshi Araki, Izumi Hirabayashi, Teruo Izumi, Yuh Shiohara, Yasuhiro Iijima
  • Publication number: 20030198748
    Abstract: An aqueous solution of mixed metal acetate including one kind or more of element selected from lanthanide series and yttrium, barium and copper is mixed with trifluoroacetic acid to prepare a solution of mixed metal trifluoroacetate. From a solution of mixed metal trifluoroacetate obtained thus, purified mixed metal trifluoroacetate of which total content of water and acetic acid is 2% by weight or less is prepared. With purified mixed metal trifluoroacetate, an oxide superconductor of excellent performance may be prepared.
    Type: Application
    Filed: May 20, 2003
    Publication date: October 23, 2003
    Applicants: Kabushiki Kaisha Toshiba, International Superconductivity Technology Center, Spark Plug Co., Ltd.
    Inventors: Takeshi Araki, Katsuya Yamagiwa, Izumi Hirabayashi
  • Patent number: 6610632
    Abstract: The present invention provides a tape-form oxide superconductor having a high degree of c-axis alignment and in-plane alignment and an improved Jc value. On a tape-form metal substrate which is non-magnetic or weakly magnetic and has high strength, there are sequentially formed a first intermediate layer wherein YSZ or Zr2Rx2O7 particles are deposited from a target with ion irradiation from a direction inclined to the metal substrate, a second intermediate layer of CeO2 or Y2O3 is formed and an RE1+XBa2−XCu3OY superconducting layer is formed by coating metalorganic salts containing F, followed by thermal decomposition.
    Type: Grant
    Filed: October 12, 2001
    Date of Patent: August 26, 2003
    Assignees: International Superconductivity Technology Center, The Juridicial Foundation, Showa Electric Wire & Cable Co., Ltd., Fujikura Ltd., Railway Technical Research Institute, Kabushiki Kaisha Toshiba
    Inventors: Tetsuji Honjo, Hiroshi Fuji, Yuichi Nakamura, Teruo Izumi, Takeshi Araki, Yutaka Yamada, Izumi Hirabayashi, Yuh Shiohara, Yasuhiro Iijima, Kaoru Takeda