Patents by Inventor Izumi Watanabe

Izumi Watanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6973826
    Abstract: A heating resistance flow rate measuring apparatus which can use a power source of an ECU in an automobile without requiring an expensive protective circuit and regulator. Heating of temperature detecting resistors themselves causes temperature changes on the windward and leeward sides, and these temperature changes depend on the amounts of heat generated by the temperature detecting resistors. The amounts of heat generated by the temperature detecting resistors depend on a voltage value of the ECU power source applied to the temperature detecting resistors, and an error is caused in a sensor output depending on a variation in the voltage of the ECU power source. Based on the finding that suppressing the amount of heat generated by the temperature detecting resistors is effective in avoiding the sensor output error caused depending on a variation in the output voltage of the ECU power source, means for suppressing the amount of heat generated by the temperature detecting resistors is disposed.
    Type: Grant
    Filed: February 9, 2005
    Date of Patent: December 13, 2005
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Masahiro Matsumoto, Masamichi Yamada, Hiroshi Nakano, Izumi Watanabe, Keiji Hanzawa, Keiichi Nakada
  • Publication number: 20050268713
    Abstract: A flow rate sensor has a problem that a resistance value of a heat generating resistor itself varies and sensor characteristics are changed during use of the sensor for a long term. Also, the temperature of the heat generating resistor must be adjusted on a circuit substrate with a resistance constituting one side of a fixed temperature difference control circuit, and this has been one of factors pushing up the production cost. All resistances used for fixed temperature difference control are formed on the same substrate as temperature sensitive resistors of the same material. This enables all the resistances for the fixed temperature difference control to be exposed to the same environmental conditions. Hence, even when the resistances change over time, the changes over time occur substantially at the same tendency. Since the resistances for the fixed temperature difference control change over time essentially at the same rate, a resulting output error is very small.
    Type: Application
    Filed: July 25, 2005
    Publication date: December 8, 2005
    Inventors: Izumi Watanabe, Junichi Horie, Keiichi Nakada, Kei Ueyama, Masamichi Yamada
  • Publication number: 20050229694
    Abstract: A heating resistance flow rate measuring apparatus which can use a power source of an ECU in an automobile without requiring an expensive protective circuit and regulator. Heating of temperature detecting resistors themselves causes temperature changes on the windward and leeward sides, and these temperature changes depend on the amounts of heat generated by the temperature detecting resistors. The amounts of heat generated by the temperature detecting resistors depend on a voltage value of the ECU power source applied to the temperature detecting resistors, and an error is caused in a sensor output depending on a variation in the voltage of the ECU power source. Based on the finding that suppressing the amount of heat generated by the temperature detecting resistors is effective in avoiding the sensor output error caused depending on a variation in the output voltage of the ECU power source, means for suppressing the amount of heat generated by the temperature detecting resistors is disposed.
    Type: Application
    Filed: February 9, 2005
    Publication date: October 20, 2005
    Applicants: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Masahiro Matsumoto, Masamichi Yamada, Hiroshi Nakano, Izumi Watanabe, Keiji Hanzawa, Keiichi Nakada
  • Publication number: 20050204810
    Abstract: The present invention provides an air flow measuring device comprising a housing with a sub-passage having a inlet and a outlet for air flow formed in the housing, the sub-passage further having a predefined curvature with a maximum downstream point and a flow measuring element located in the sub-passage at a position at least further downstream from the point.
    Type: Application
    Filed: May 24, 2005
    Publication date: September 22, 2005
    Inventors: Hiromu Kikawa, Izumi Watanabe, Shinya Igarashi, Keiichi Nakada, Kei Ueyama
  • Patent number: 6935172
    Abstract: A thermal type flow measuring device comprises a heating resistor(HF), a temperature measuring resistor(Ru) upstream of the heating resistor(HF) with respect to a fluid(Q), and a temperature measuring resistor(Rd) downstream of the heating resistor(HF). A heat sensitive resistance element(CF), the upstream temperature measuring resistor(Ru) and the downstream temperature measuring resistor(Rd) form a first bridge circuit, and this first bridge circuit and the heating resistor(HF) form a second bridge circuit. Feedback control means(OP1, Tr) heat the heating resistor(HF) in accordance with an output for keeping a balance of the second bridge circuit.
    Type: Grant
    Filed: August 14, 2001
    Date of Patent: August 30, 2005
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Junichi Horie, Izumi Watanabe, Shinya Igarashi, Keiichi Nakada, Kei Ueyama
  • Publication number: 20050186696
    Abstract: A gas flowmeter capable of reducing a secular change comprises a silicon semiconductor substrate formed with a cavity and a heat element formed above the cavity of the semiconductor substrate by way of an insulating film. The heat element is a silicon (Si) semiconductor thin film impurity-doped at high concentration. Stoichiometrically stable silicon nitride (Si3N4) thin films as barrier layers which less permeate and less absorb hydrogen in the heat generating temperature range of the heat element are formed above and below the silicon (Si) semiconductor thin film.
    Type: Application
    Filed: March 24, 2005
    Publication date: August 25, 2005
    Applicants: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Masamichi Yamada, Junichi Horie, Izumi Watanabe, Keiichi Nakada
  • Patent number: 6925866
    Abstract: A flow rate sensor has a problem that a resistance value of a heat generating resistor itself varies and sensor characteristics are changed during use of the sensor for a long term. Also the temperature of the heat generating resistor must be adjusted on a circuit substrate with a resistance constituting one side of a fixed temperature difference control circuit, and this has been one of factors pushing up the production cost. All resistances used for fixed temperature difference control are formed on the same substrate as temperature sensitive resistors of the same material. This enables all the resistances for the fixed temperature difference control to be exposed to the same environmental conditions. Hence, even when the resistances change over time, the changes over time occur substantially at the same tendency. Since the resistances for the fixed temperature difference control change over time essentially at the same rate, a resulting output error is very small.
    Type: Grant
    Filed: June 2, 2003
    Date of Patent: August 9, 2005
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Izumi Watanabe, Junichi Horie, Keiichi Nakada, Kei Ueyama, Masamichi Yamada
  • Patent number: 6923053
    Abstract: A gas flowmeter capable of reducing a secular change comprises a silicon semiconductor substrate formed with a cavity and a heat element formed above the cavity of the semiconductor substrate by way of an insulating film. The heat element is a silicon (Si) semiconductor thin film impurity-doped at high concentration. Stoichiometrically stable silicon nitride (Si3N4) thin films as barrier layers which less permeate and less absorb hydrogen in the heat generating temperature range of the heat element are formed above and below the silicon (Si) semiconductor thin film.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: August 2, 2005
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Masamichi Yamada, Junichi Horie, Izumi Watanabe, Keiichi Nakada
  • Publication number: 20050120789
    Abstract: A heating resistor type flow-measuring device is capable of adjusting heating temperature of a heating resistor according to the ambient temperature as well as making the initial adjustment. A heating resistor, a thermoresistance, a group of the resistors, and an amplifier constitute a bridge circuit, and leading terminals of the group of resistors are connected to one of input terminals of an amplifier for amplifying an error voltage through MOS transistors. The heating temperature of the heating resistor can be changed by selecting one of the MOS transistors and turning it on.
    Type: Application
    Filed: August 19, 2004
    Publication date: June 9, 2005
    Inventors: Masahiro Matsumoto, Masamichi Yamada, Hiroshi Nakano, Izumi Watanabe, Keiji Hanzawa, Ryo Sato
  • Patent number: 6889545
    Abstract: A flow rate sensor detects the flow rate in a pulsating condition including a large amount of the reverse flow. Upstream temperature sensors and downstream temperature sensors are formed in both sides of a heater, parallel resistors are formed in the external side of a thin film portion (cavity), and the downstream temperature sensors are connected at the contacts. The upstream and downstream temperature sensors are respectively allocated to the four sides of the bridge circuit so that the sensors of the same type are not side by side and the electrodes are balanced when the flow rate is zero. The upstream temperature sensor is cooled during the forward flow, while the downstream temperature sensor is influenced by the heater but virtual change is rather small and potential difference between the electrodes becomes larger. During the reverse flow, the downstream temperature sensor is cooled but virtual change is rather small.
    Type: Grant
    Filed: February 17, 2004
    Date of Patent: May 10, 2005
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Keiichi Nakada, Junichi Horie, Izumi Watanabe
  • Publication number: 20050072225
    Abstract: In regard to an output of an intake flow meter for an internal combustion engine, a pulsation error can be reduced and dispersion in correction at the time of correction of response delay (a recovering of response delay) is reduced. A digital device is used for pre-processing of a control unit for inputting a flow rate measuring signal. An output voltage of the flow sensor is converted into a digital value, the digital value is converted into a flow rate and adds a response delay. The control unit detects a degree of response delay in reference to dispersion in a clock signal so as to perform response delay recovering and reduce dispersion of the response delay.
    Type: Application
    Filed: September 30, 2004
    Publication date: April 7, 2005
    Inventors: Atsushi Kanke, Izumi Watanabe, Keiji Hanzawa
  • Publication number: 20050050953
    Abstract: A gas flowmeter capable of reducing a secular change comprises a silicon semiconductor substrate formed with a cavity and a heat element formed above the cavity of the semiconductor substrate by way of an insulating film. The heat element is a silicon (Si) semiconductor thin film impurity-doped at high concentration. Stoichiometrically stable silicon nitride (Si3N4) thin films as barrier layers which less permeate and less absorb hydrogen in the heat generating temperature range of the heat element are formed above and below the silicon (Si) semiconductor thin film.
    Type: Application
    Filed: October 1, 2004
    Publication date: March 10, 2005
    Inventors: Masamichi Yamada, Junichi Horie, Izumi Watanabe, Keiichi Nakada
  • Patent number: 6860149
    Abstract: To offer a mass airflow measuring apparatus in which the effect of the adhesion onto the heating resistor caused while the engine is off is reduced and the measuring accuracy is improved. The apparatus measures the mass airflow of the air sucked into the internal combustion engine, using the heating resistor 1. The power control circuit 4 maintains the heating resistor 1 temperature equal to or higher than the temperature during the operation of the internal combustion engine after the internal combustion engine has stopped and until the temperature of the internal combustion engine and its apparatuses installed in the suction system has lowered below the generation temperature of volatile gas such as oil vapor.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: March 1, 2005
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Shinya Igarashi, Atsushi Kanke, Rintarou Minamitani, Keiichi Nakada, Izumi Watanabe
  • Patent number: 6854326
    Abstract: Resin members, on the surfaces of which metal films are formed, are used for; an auxiliary air passage provided in a main air passage, in which a sensor element of a physical quantity sensor such as an air flow sensor, an intake-air temperature sensor, etc., is situated; a housing; and so forth; in order to decrease both the thermal conductivity and the emissivity of those components to respective small values, whereby the temperature increase of the sensor due to both the heat conduction and the heat radiation can be suppressed.
    Type: Grant
    Filed: October 1, 2003
    Date of Patent: February 15, 2005
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Izumi Watanabe, Naoki Saito, Masayuki Kozawa, Keiichi Nakada, Kei Ueyama
  • Patent number: 6851311
    Abstract: A flow measurement sensor accurately outputs signals even when pulsation flow is generated at high engine speed and also when pulsation flow accompanying reverse flow is generated. The flow measurement sensor has a flow measurement element which has a heater resistance pattern on one side of a plate-shaped member, and a bypass passage in which the flow measurement element is disposed, a first outlet through which fluid flowing along the surface of the flow measurement element flows out, and a second outlet through which fluid flowing along the back side of the flow measurement element flows out. The second outlet is positioned at a different location from the first outlet.
    Type: Grant
    Filed: March 27, 2002
    Date of Patent: February 8, 2005
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Keiichi Nakada, Izumi Watanabe, Junichi Horie, Kei Ueda
  • Publication number: 20040244479
    Abstract: A thermal air flowmeter which improves air flow rate measurement sensitivity, reduces power consumption of a heating element and broadens the measuring range. A heating resistor is provided on insulating film in a thermal insulating area as a rectangular space on a flat substrate; and two resistance temperature detectors are provided upstream and downstream of the heating resistor. The sides of the rectangular thermal insulating area which are parallel to the axis of air flow are longer than its sides which are perpendicular to the axis of air flow.
    Type: Application
    Filed: June 4, 2004
    Publication date: December 9, 2004
    Inventors: Masahiro Matsumoto, Masamichi Yamada, Izumi Watanabe, Keiji Hanzawa, Keiichi Nakada
  • Publication number: 20040211253
    Abstract: A thermal type flow measuring device comprises a heating resistor(HF), a temperature measuring resistor(Ru) upstream of the heating resistor(HF) with respect to a fluid(Q), and a temperature measuring resistor(Rd) downstream of the heating resistor(HF). A heat sensitive resistance element(CF), the upstream temperature measuring resistor(Ru) and the downstream temperature measuring resistor(Rd) form a first bridge circuit, and this first bridge circuit and the heating resistor(HF) form a second bridge circuit. Feedback control means(OP1, Tr) heat the heating resistor(HF) in accordance with an output for keeping a balance of the second bridge circuit.
    Type: Application
    Filed: February 11, 2004
    Publication date: October 28, 2004
    Inventors: Junichi Horie, Izumi Watanabe, Shinya Igarashi, Keiichi Nakada, Kei Ueyama
  • Publication number: 20040163464
    Abstract: A flow rate sensor for detecting, with higher accuracy, the flow rate in a pulsating condition including a large amount of the reverse flow. Upstream temperature sensors and downstream temperature sensors are formed in both sides of a heater, parallel resistors are formed in the external side of a thin film portion (cavity), and the downstream temperature sensors are connected at the contacts. The upstream and downstream temperature sensors are respectively allocated to the four sides of the bridge circuit in the manner that the sensors of the same type are never provided side by side and the electrodes are balanced when the flow rate is zero. The upstream temperature sensor is cooled during the forward flow, while the downstream temperature sensor is influenced by the heater but virtual change is rather small and potential difference between the electrodes becomes larger. During the reverse flow, the downstream temperature sensor is cooled but virtual change is rather small.
    Type: Application
    Filed: February 17, 2004
    Publication date: August 26, 2004
    Inventors: Keiichi Nakada, Junichi Horie, Izumi Watanabe
  • Publication number: 20040131154
    Abstract: An X-ray diagnosis apparatus for obtaining an X-ray image comprises an X-ray radiator, a detector, a first mechanism, a second mechanism, a controller, and an image processor. The X-ray radiator is configured to radiate an X-ray to a specimen. The detector is configured to detect an X-ray data resulting from the X-ray. The first mechanism is coupled to the detector and is configured to shift the detector along a detecting plane of the detector. The second mechanism is coupled to the X-ray radiator and is configured to change a radiation direction of the X-ray against the detector. The controller is configured to control the second mechanism in accordance with the shift of the detector. The image processor is coupled to the detector and is configured to prepare a fluoroscopic image data as the X-ray image based on the X-ray data. The image processor also corrects a deformation of the fluoroscopic image data.
    Type: Application
    Filed: September 16, 2003
    Publication date: July 8, 2004
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Izumi Watanabe, Makoto Kaneko, Hisayuki Uehara, Akio Tetsuka, Kazutoyo Hirayama, Akiko Yamahana
  • Patent number: 6752014
    Abstract: A hot-wire type air flow meter for an internal combustion engine has an exothermic resistor film provided on a thin portion formed on a silicon substrate and a control circuit for controlling a voltage to be applied to the resistor film or a current to be supplied. The resistor film is arranged in a suction pipe of the internal combustion engine and heat is emitted to an air through the resistor film. In the case where a liquid droplet is deposited onto the resistor film, the control circuit controls the applied voltage to a value smaller than a voltage which is applied to the resistor film at the time of measuring a maximum specified measuring range or controls the supply current to a value smaller than a current flowing in the resistor film at the time of measuring the maximum specified measuring range.
    Type: Grant
    Filed: September 1, 2000
    Date of Patent: June 22, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Atsushi Kanke, Masamichi Yamada, Keiichi Nakada, Izumi Watanabe, Hisao Sonobe