Patents by Inventor Izzat Hekmat Izzat

Izzat Hekmat Izzat has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040156433
    Abstract: A fine-grain scalable video data apparatus, system, method and data structure is disclosed. An encoder (110) for encoding input video data as minimum bitrate macroblock data to produce DCT data having DCT coefficients representing a minimum bitrate version of the macroblock data. The encoder (110) also encodes the input video data as intermediate bitrate macroblock data to produce DCT data having DCT coefficients representing an intermediate bitrate version of the macroblock data. An adaptive motion compensator (132) (whether incorporated within the encoder or externally) communicates with the encoder for predicting whether a decoded version of the intermediate bitrate macroblock data has an accumulated predicted error frame energy exceeding a maximum threshold (228).
    Type: Application
    Filed: December 3, 2003
    Publication date: August 12, 2004
    Inventors: Mary Lafuze Comer, Izzat Hekmat Izzat
  • Patent number: 6665020
    Abstract: A minimal level of interoperability for exchanging audio/video (A/V) content and associated control between common consumer electronic (CE) devices is defined. This interoperability is based on the IEEE 1394 serial bus for the physical and link layers and makes use of AV/C or CAL as the control language. This invention provides for reducing the number of remote controls that the user might need by allowing remote control commands to always be received by a controlling device (e.g., digital television) and then routed to the appropriate peripheral device (e.g. digital VCR) after translation into a universal format.
    Type: Grant
    Filed: September 13, 2000
    Date of Patent: December 16, 2003
    Assignee: Thomson Licensing S.A.
    Inventors: Thomas Anthony Stahl, Steven Charles Rhoads, Mike Arthur Derrenberger, Izzat Hekmat Izzat, Saban Kurugay, Amit Kumar Chatterjee, Sanjeev Nagpal
  • Publication number: 20030118113
    Abstract: A fine-grain scalable (FGS) encoder, decoder, and corresponding methods are disclosed which utilize conditional replacement for selecting between a base layer prediction and an enhancement layer prediction. Processes include: encoding data as a plurality of discrete cosine transform (“DCT”) coefficients for each of a base layer and an enhancement layer, a first conditional replacement (“CR”) portion in signal communication with the encoder for selecting between a base layer prediction and enhancement layer prediction for each DCT coefficient of the enhancement layer to increase coding efficiency, receiving encoded DCT data from encoder, decoding the encoded DCT data to produce reconstructed data responsive to the selected prediction, and a second CR portion in signal communication with the decoder for selecting between the base layer prediction and the enhancement layer prediction for each DCT coefficient of the enhancement layer to reduce prediction drift.
    Type: Application
    Filed: August 20, 2002
    Publication date: June 26, 2003
    Inventors: Mary Lafuze Comer, Izzat Hekmat Izzat
  • Publication number: 20030118099
    Abstract: A fine-grain scalable (FGS) encoder, decoder, and corresponding methods are disclosed which utilize conditional replacement for selecting between a base layer prediction and an enhancement layer prediction. Processes include: encoding data as a plurality of discrete cosine transform (“DCT”) coefficients for each of a base layer and an enhancement layer, a first conditional replacement (“CR”) portion in signal communication with the encoder for selecting between a base layer prediction and enhancement layer prediction for each DCT coefficient of the enhancement layer to increase coding efficiency, receiving encoded DCT data from encoder, decoding the encoded DCT data to produce reconstructed data responsive to the selected prediction, and a second CR portion in signal communication with the decoder for selecting between the base layer prediction and the enhancement layer prediction for each DCT coefficient of the enhancement layer to reduce prediction drift.
    Type: Application
    Filed: August 20, 2002
    Publication date: June 26, 2003
    Inventors: Mary Lafuze Comer, Izzat Hekmat Izzat
  • Publication number: 20020090028
    Abstract: A CODEC system for spatially scalable video data includes a decimate unit for performing DCT-based down-sampling with respect to macro block data of input video data to produce decimated block data representing low frequency part of the macro block data, a first encoder for encoding the decimated block data to produce base layer DCT data having DCT coefficients representing the low frequency part, a first decoder for decoding the base layer DCT data from the first encoder to produce base layer block data, an interpolate unit for performing DCT-based interpolation with respect to the base layer block data from the first decoder to produce interpolated base layer block data, a second encoder for encoding enhancement layer block data obtained from the macro block data and the interpolated base layer block data to produce enhancement layer DCT data wherein the enhancement layer block data representing high frequency part of the macro block data, and a second decoder for decoding the enhancement layer DCT data fro
    Type: Application
    Filed: August 31, 2001
    Publication date: July 11, 2002
    Inventors: Mary Lafuze Comer, Izzat Hekmat Izzat