Patents by Inventor J. Armstrong

J. Armstrong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230006197
    Abstract: Implementations described herein generally relate to metal electrodes, more specifically lithium-containing anodes, high performance electrochemical devices, such as secondary batteries, including the aforementioned lithium-containing electrodes, and methods for fabricating the same. In one implementation, an anode electrode structure is provided. The anode electrode structure comprises a current collector comprising copper. The anode electrode structure further comprises a lithium metal film formed on the current collector. The anode electrode structure further comprises a solid electrolyte interface (SEI) film stack formed on the lithium metal film. The SEI film stack comprises a chalcogenide film formed on the lithium metal film. In one implementation, the SEI film stack further comprises a lithium oxide film formed on the chalcogenide film. In one implementation, the SEI film stack further comprises a lithium carbonate film formed on the lithium oxide film.
    Type: Application
    Filed: September 7, 2022
    Publication date: January 5, 2023
    Inventors: Girish Kumar GOPALAKRISHNAN NAIR, Subramanya P. HERLE, Karl J. ARMSTRONG
  • Patent number: 11542032
    Abstract: A hybrid interchangeable battery evaluation tool (HIBET) is provided. HIBET determines an amount of electrical energy and an amount of jet fuel necessary for a hybrid electric aircraft to complete a flight based on a range of the flight, a payload of the hybrid electric aircraft, an indication of a battery mass limitation of the hybrid electric aircraft, and an optimization of an energy split between the electrical energy and the jet fuel. HIBET causes an indication of the amount of electrical energy to be displayed in a graphical user interface and/or to be otherwise outputted.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: January 3, 2023
    Assignee: ROLLS-ROYCE NORTH AMERICAN TECHNOLOGIES INC.
    Inventors: Stephen Long, Dwayne Bevis, Sean Guitar, Michael J. Armstrong
  • Publication number: 20220360600
    Abstract: An illustrative method for performing an agentless workload assessment may include capturing, by a data platform using an agentless heuristic, compute asset data associated with one or more compute assets deployed within a cloud environment, determining, by the data platform and based on the compute asset data, a condition associated with the one or more compute assets, and performing, by the data platform and based on the condition, an agent-based operation with respect to the one or more compute assets.
    Type: Application
    Filed: January 31, 2022
    Publication date: November 10, 2022
    Inventors: Theodore M. Reed, Nolan K. Karpinski, Yijou Chen, Divyang J. Soni, Matthew J. Armstrong
  • Publication number: 20220328861
    Abstract: A method includes stacking unit cells in a stacking direction. Each unit cell includes an electrode structure, a separator structure, and a counter-electrode structure. The electrode structure includes an electrode current collector and an electrode active material layer, and the counter-electrode structure includes a counter-electrode current collector and a counter-electrode active material layer. The electrode and counter-electrode structures extend in a longitudinal direction perpendicular to the stacking direction, and an end portion of the electrode current collector extends past the electrode active material and the separator structure in the longitudinal direction.
    Type: Application
    Filed: March 31, 2022
    Publication date: October 13, 2022
    Inventors: Michael J. Armstrong, Daniel J. Noelle, Robert S. Busacca, Bruno A. Valdes, Robert K. Rosen, Murali Ramasubramanian, Ashok Lahiri, Robert M. Spotnitz
  • Patent number: 11462733
    Abstract: Implementations described herein generally relate to metal electrodes, more specifically lithium-containing anodes, high performance electrochemical devices, such as secondary batteries, including the aforementioned lithium-containing electrodes, and methods for fabricating the same. In one implementation, an anode electrode structure is provided. The anode electrode structure comprises a current collector comprising copper. The anode electrode structure further comprises a lithium metal film formed on the current collector. The anode electrode structure further comprises a solid electrolyte interface (SEI) film stack formed on the lithium metal film. The SEI film stack comprises a chalcogenide film formed on the lithium metal film. In one implementation, the SEI film stack further comprises a lithium oxide film formed on the chalcogenide film. In one implementation, the SEI film stack further comprises a lithium carbonate film formed on the lithium oxide film.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: October 4, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Girish Kumar Gopalakrishnan Nair, Subramanya P. Herle, Karl J. Armstrong
  • Patent number: 11454303
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a shift rod that cooperates with a shift rod nut to actuate a ratio change in a CVT. In another embodiment, an axial force generating mechanism can include a torsion spring, a traction ring adapted to receive the torsion spring, and a roller cage retainer configured to cooperate with the traction ring to house the torsion spring. Various inventive idler-and-shift-cam assemblies can be used to facilitate shifting the ratio of a CVT. Embodiments of a hub shell and a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: September 27, 2022
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jon M. Nichols, Brad P. Pohl, Daniel J. Dawe, Oronde J. Armstrong, Charles B. Lohr, Loren T. McDaniel, Matthew P. Simister, Fernand A. Thomassy, Ghayyurul I. Usmani, Paul M. Elhardt, Terry L. Stewart, Peter D. Poxton, Elton L. Eidson
  • Publication number: 20220290290
    Abstract: An optical device is provided. The optical device includes an optical device substrate having a first surface; and an optical device film disposed over the first surface of the optical device substrate. The optical device film is formed of titanium oxide. The titanium oxide is selected from the group of titanium(IV) oxide (TiO2), titanium monoxide (TiO), dititanium trioxide (Ti2O3), Ti3O, Ti2O, ?-TiOx, where x is 0.68 to 0.75, and TinO2n-1, where n is 3 to 9, the optical device film has a refractive index greater than 2.72 at a 520 nanometer (nm) wavelength, and a rutile phase of the titanium oxide comprises greater than 94 percent of the optical device film.
    Type: Application
    Filed: March 11, 2022
    Publication date: September 15, 2022
    Inventors: Kenichi OHNO, Andrew CEBALLOS, Karl J. ARMSTRONG, Takashi KURATOMI, Rami HOURANI, Ludovic GODET
  • Publication number: 20220260766
    Abstract: An optical device is provided. The optical device includes an optical device substrate having a first surface; and a plurality of optical device structures disposed over the first surface of the optical device substrate, the plurality of optical device structures spaced apart from each other in a direction parallel to the first surface, and each optical device structure of the plurality of optical device structures including an optical device film. The optical device film of each optical device structure includes a first zone and a second zone, the first zone positioned between the optical device substrate and the second zone, wherein the first zone and the second zone each include one or more of oxygen and nitrogen, and the first zone and the second zone collectively include three or more metal, metalloid, or semiconductor elements.
    Type: Application
    Filed: February 16, 2022
    Publication date: August 18, 2022
    Inventors: Kenichi OHNO, Andrew CEBALLOS, Karl J. ARMSTRONG, Rami HOURANI, Takashi KURATOMI, Ludovic GODET
  • Publication number: 20220212983
    Abstract: Embodiments of the present disclosure generally relate to encapsulated optical devices and methods for fabricating the encapsulated optical devices. In one or more embodiments, a method for encapsulating an optical device includes depositing a metallic silver layer on a substrate, depositing a barrier layer on the metallic silver layer, where the barrier layer contains silicon nitride, a metallic element, a metal nitride, or any combination thereof, and depositing an encapsulation layer containing silicon oxide on the barrier layer.
    Type: Application
    Filed: January 5, 2021
    Publication date: July 7, 2022
    Inventors: Alexia Adilene PORTILLO RIVERA, Andrew CEBALLOS, Kenichi OHNO, Rami HOURANI, Karl J. ARMSTRONG, Brian Alexander COHEN
  • Publication number: 20220188698
    Abstract: Disclosed embodiments include an event processor that identifies events generated by an entity from various resources. The event processor generates a resource cluster interest score based on the events indicating an interest level of the entity in multiple hostname resources belonging to a first party. The event processor identifies a topic cluster including multiple topics and generates a topic cluster interest score indicating an interest level of the entity in the topics. The event processor generates a weighted intent score based on the resource interest score and the topic cluster interest score. The weighted intent score provides an indication of when the entity is interested in consuming resources, or interested in products/services, provided by the first party. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: January 27, 2021
    Publication date: June 16, 2022
    Applicant: BOMBORA, INC.
    Inventors: Nicholaus E. HALECKY, Robert J. ARMSTRONG, Erik G. MATLICK
  • Publication number: 20220188699
    Abstract: Disclosed embodiments include a resource classification system (RCS) identifies one or more features in information objects (InObs) and uses the features to classify the InObs. The features may be based on structural semantics of the InObs, content semantics of InObs, content interaction behavior with the InObs, types of users accessing the InObs, and/or the like. The RCS may generate vectors that represent the different features. The vectors may be used to train a machine learning model to predict resource classifications of the InObs. The predicted resource classifications provide more accurate intent, consumption, and surge score predictions than existing solutions. Other embodiments may be described and/or claimed.
    Type: Application
    Filed: March 11, 2021
    Publication date: June 16, 2022
    Applicant: BOMBORA, INC.
    Inventors: Erik G. MATLICK, Robert J. ARMSTRONG, Nicholaus E. HALECKY, Benny LIN
  • Publication number: 20220176900
    Abstract: A gas turbine engine and methods of operation include a low pressure electric motor-generator arranged for selective operation in a generator mode to generate electrical power or a drive mode to assist rotation of a low pressure drive shaft of the engine.
    Type: Application
    Filed: September 23, 2021
    Publication date: June 9, 2022
    Inventors: Donald Klemen, Michael J. Armstrong
  • Publication number: 20220173485
    Abstract: Embodiments of secondary batteries having electrode assemblies are provided. A secondary battery can comprise an electrode assembly having a stacked series of layers, the stacked series of layers having an offset between electrode and counter-electrode layers in a unit cell member of the stacked series. A set of constraints can be provided with a primary constraint system with first and second primary growth constraints separated from each other in a longitudinal direction, and connected by at least one primary connecting member, and a secondary constraint system comprises first and second secondary growth constraints separated in a second direction and connected by members of the stacked series of layers. The primary constraint system may at least partially restrain growth of the electrode assembly in the longitudinal direction, and the secondary constraint system may at least partially restrain growth in the second direction that is orthogonal to the longitudinal direction.
    Type: Application
    Filed: February 17, 2022
    Publication date: June 2, 2022
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Ken S. MATSUBAYASHI, Jeremie J. DALTON, Jason Newton HOWARD, Robert Keith ROSEN, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin L. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Publication number: 20220120340
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a shift rod that cooperates with a shift rod nut to actuate a ratio change in a CVT. In another embodiment, an axial force generating mechanism can include a torsion spring, a traction ring adapted to receive the torsion spring, and a roller cage retainer configured to cooperate with the traction ring to house the torsion spring. Various inventive idler-and-shift-cam assemblies can be used to facilitate shifting the ratio of a CVT. Embodiments of a hub shell and a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
    Type: Application
    Filed: December 28, 2021
    Publication date: April 21, 2022
    Inventors: Jon M. Nichols, Brad P. Pohl, Daniel J. Dawe, Oronde J. Armstrong, Charles B. Lohr, Loren T. McDaniel, Matthew P. Simister, Fernand A. Thomassy, Ghayyurul I. Usmani, Paul M. Elhardt, Terry L. Stewart, Peter D. Poxton, Elton L. Eidson
  • Publication number: 20220123370
    Abstract: Embodiments of a method for the preparation of an electrode assembly, include removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population in a stacking direction to form a stacked population of unit cells.
    Type: Application
    Filed: December 27, 2021
    Publication date: April 21, 2022
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Harrold J. RUST, III, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Jeremie J. DALTON, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin J. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Publication number: 20220115753
    Abstract: Secondary batteries and methods of manufacture thereof are provided. A secondary battery can comprise an offset between electrode and counter-electrode layers in a unit cell. Secondary batteries can be prepared by removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population.
    Type: Application
    Filed: October 19, 2021
    Publication date: April 14, 2022
    Inventors: Robert S. BUSACCA, Ashok LAHIRI, Murali RAMASUBRAMANIAN, Bruno A. VALDES, Gardner Cameron DALES, Christopher J. SPINDT, Geoffrey Matthew HO, Harrold J. RUST, III, James D. WILCOX, John F. VARNI, Kim Han LEE, Nirav S. SHAH, Richard J. CONTRERAS, Lynn VAN ERDEN, Ken S. MATSUBAYASHI, Jeremie J. DALTON, Jason Newton HOWARD, Robert Keith ROSEN, Jonathan C. DOAN, Michael J. ARMSTRONG, Anthony CALCATERRA, Benjamin L. CARDOZO, Joshua David WINANS, Neelam SINGH, Jeffrey Glenn BUCK, Thomas John SCHUERLEIN, Kim Lester FORTUNATI, Neal SARSWAT
  • Patent number: 11264680
    Abstract: Embodiments of secondary batteries having electrode assemblies are provided. A secondary battery can comprise an electrode assembly having a stacked series of layers, the stacked series of layers having an offset between electrode and counter-electrode layers in a unit cell member of the stacked series. A set of constraints can be provided with a primary constraint system with first and second primary growth constraints separated from each other in a longitudinal direction, and connected by at least one primary connecting member, and a secondary constraint system comprises first and second secondary growth constraints separated in a second direction and connected by members of the stacked series of layers. The primary constraint system may at least partially restrain growth of the electrode assembly in the longitudinal direction, and the secondary constraint system may at least partially restrain growth in the second direction that is orthogonal to the longitudinal direction.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 1, 2022
    Assignee: ENOVIX CORPORATION
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Christopher J. Spindt, Geoffrey Matthew Ho, Harrold J. Rust, III, James D. Wilcox, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Lynn Van Erden, Ken S. Matsubayashi, Jeremie J. Dalton, Jason Newton Howard, Robert Keith Rosen, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin L. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat
  • Publication number: 20220026603
    Abstract: Embodiments of the present disclosure relate to optical device films and methods of forming optical device films. Specifically, embodiments described herein provide for an optical device film having a constant oxygen-concentration, a first concentration profile of the first material, and a second concentration profile of the second material. The first material, described and referenced to herein, has a first refractive index about 2.0 or greater and the second material has a second refractive index less than 2.0.
    Type: Application
    Filed: July 9, 2021
    Publication date: January 27, 2022
    Inventors: Andrew CEBALLOS, Ludovic GODET, Karl J. ARMSTRONG, Rami HOURANI
  • Publication number: 20220025518
    Abstract: Embodiments of the present disclosure generally relate to methods and materials for optical device fabrication. More specifically, embodiments described herein provide for optical film deposition methods and materials to expand the process window for amorphous optical film deposition via incorporation of dopant atoms by suppressing the crystal growth of optical materials during deposition. By enabling amorphous films to be deposited at higher temperatures, significant cost savings and increased throughput are possible.
    Type: Application
    Filed: July 2, 2021
    Publication date: January 27, 2022
    Inventors: Andrew CEBALLOS, Ludovic GODET, Karl J. ARMSTRONG, Rami HOURANI
  • Patent number: 11211639
    Abstract: Embodiments of a method for the preparation of an electrode assembly, include removing a population of negative electrode subunits from a negative electrode sheet, the negative electrode sheet comprising a negative electrode sheet edge margin and at least one negative electrode sheet weakened region that is internal to the negative electrode sheet edge margin, removing a population of separator layer subunits from a separator sheet, and removing a population of positive electrode subunits from a positive electrode sheet, the positive electrode sheet comprising a positive electrode edge margin and at least one positive electrode sheet weakened region that is internal to the positive electrode sheet edge margin, and stacking members of the negative electrode subunit population, the separator layer subunit population and the positive electrode subunit population in a stacking direction to form a stacked population of unit cells.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: December 28, 2021
    Assignee: ENOVIX CORPORATION
    Inventors: Robert S. Busacca, Ashok Lahiri, Murali Ramasubramanian, Bruno A. Valdes, Gardner Cameron Dales, Harrold J. Rust, III, John F. Varni, Kim Han Lee, Nirav S. Shah, Richard J. Contreras, Jeremie J. Dalton, Jonathan C. Doan, Michael J. Armstrong, Anthony Calcaterra, Benjamin J. Cardozo, Joshua David Winans, Neelam Singh, Jeffrey Glenn Buck, Thomas John Schuerlein, Kim Lester Fortunati, Neal Sarswat