Patents by Inventor J. Christopher Love

J. Christopher Love has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240084287
    Abstract: The present invention relates to the analysis of complex single cell sequencing libraries. Disclosed are methods for enrichment of library members based on the presence of cell-of origin barcodes to identify and concentrate DNA that is relevant to interesting cells or components that would be expensive or difficult to study otherwise. Also, disclosed are methods of capturing cDNA library molecules by use of CRISPR systems, hybridization or PCR. The present invention allows for identifying the properties of rare cells in single cell RNA-seq data and accurately profile them through clustering approaches. Further information on transcript abundances from subpopulations of single cells can be analyzed at a lower sequencing effort. The methods also allow for linking TCR alpha and beta chains at the single cell level.
    Type: Application
    Filed: June 1, 2023
    Publication date: March 14, 2024
    Inventors: Paul Blainey, Navpreet Ranu, Todd Gierahn, J. Christopher Love
  • Publication number: 20240084286
    Abstract: This disclosure provides a method for substantially increasing the concentration of cfDNA in a patient. By injecting a patient with lipid and/or polymer nanoparticles, agents that bind cfDNA, or inhibit deoxyribonucleases prior to collection of a sample of cfDNA, e.g., by way of a liquid biopsy, major pathways for the degradation of cfDNA are temporarily blocked, permitting transient accumulation of cfDNA. This strategy has the potential to dramatically enhance the quality of detection achieved by downstream cfDNA e analytical applications, such as sequencing applications.
    Type: Application
    Filed: January 25, 2022
    Publication date: March 14, 2024
    Applicants: The Broad Institute, Inc., Massachusetts Institute of Technology, The General Hospital Corporation
    Inventors: Viktor A. Adalsteinsson, Shervin Tabrizi, Sangeeta N. Bhatia, J. Christopher Love, Maria Carmen Martin Alonso, Kan Xiong
  • Patent number: 11872279
    Abstract: The present disclosure relates to, inter alia, variants of the receptor binding domain of a coronavirus (e.g., SARS-CoV-2) having increased immunogenicity and reduced aggregation, and the use of the RBD variants in methods for preventing infection of the coronavirus.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: January 16, 2024
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: J. Christopher Love, Sergio Andre Rodriguez Aponte, Neil Chandra Dalvie
  • Patent number: 11806714
    Abstract: Isolating or identifying a cell based on a physical property of said cell can include providing a cell suspension; passing said suspension through a microfluidic channel that includes a constriction; passing the cell suspension through the constriction; and, contacting said cell suspension solution with a compound. The constriction can be sized to preferentially deform a relatively larger cell compared to a relatively smaller cell.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: November 7, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Armon R. Sharei, Viktor A. Adalsteinsson, Nahyun Cho, Robert S. Langer, J. Christopher Love, Klavs F. Jensen
  • Publication number: 20230348899
    Abstract: The present invention relates to methods of detecting region(s) of interest in a gene comprising a polyA tail. The region(s) of interest can include gene(s), region(s), mutation(s), deletion(s), insertion(s), indel(s), and/or translocation(s). The region(s) can be greater than or less than 1 kilobases from the polyA tail. Methods can include forming a library of single cell transcripts comprising the region(s) in close proximity to a cell barcode and a unique molecular identifier (UMI). Methods for distinguishing cells by genotype can include amplifying the transcripts using PCR methods and detecting the cell barcode and UMI using single cell sequencing methods. Transcripts can be enriched using tagged region-specific PCR primers. Cell barcodes can be brought into close proximity to the region(s) by circularizing the transcripts. Sequencing of the transcripts can include using primer binding sites added during PCR amplification and library indexes for multiplexed sequencing.
    Type: Application
    Filed: June 13, 2023
    Publication date: November 2, 2023
    Inventors: Peter van Galen, Volker Hovestadt, Travis Hughes, Marc H. Wadsworth II, Bradley Bernstein, Alexander K. Shalek, Todd M. Gierahn, J. Christopher Love, Ang A. Tu
  • Patent number: 11767557
    Abstract: Modifications to both hardware and enzymatic reactions used in single cell analyses such as but not limited to Seq-well that enable significant increases in the yield of transcripts per cell, portability and ease of use, increased scalability of the assay, and linkage of transcript information to other measurements made in the picowell arrays are disclosed.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: September 26, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: J. Christopher Love, Todd Michael Gierahn, Alexander K. Shalek, Marc Havens Wadsworth, Travis K. Hughes
  • Patent number: 11732257
    Abstract: The present invention relates to methods of detecting region(s) of interest in a gene comprising a polyA tail. The region(s) of interest can include gene(s), region(s), mutation(s), deletion(s), insertion(s), indel(s), and/or translocation(s). The region(s) can be greater than or less than 1 kilobases from the polyA tail. Methods can include forming a library of single cell transcripts comprising the region(s) in close proximity to a cell barcode and a unique molecular identifier (UMI). Methods for distinguishing cells by genotype can include amplifying the transcripts using PCR methods and detecting the cell barcode and UMI using single cell sequencing methods. Transcripts can be enriched using tagged region-specific PCR primers. Cell barcodes can be brought into close proximity to the region(s) by circularizing the transcripts. Sequencing of the transcripts can include using primer binding sites added during PCR amplification and library indexes for multiplexed sequencing.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: August 22, 2023
    Assignees: Massachusetts Institute of Technology, The General Hospital Corporation
    Inventors: Peter van Galen, Volker Hovestadt, Travis Hughes, Marc H. Wadsworth, II, Bradley Bernstein, Alexander K. Shalek, Todd M. Gierahn, J. Christopher Love, Ang A. Tu
  • Patent number: 11702649
    Abstract: The present invention relates to the analysis of complex single cell sequencing libraries. Disclosed are methods for enrichment of library members based on the presence of cell-of origin barcodes to identify and concentrate DNA that is relevant to interesting cells or components that would be expensive or difficult to study otherwise. Also, disclosed are methods of capturing cDNA library molecules by use of CRISPR systems, hybridization or PCR. The present invention allows for identifying the properties of rare cells in single cell RNA-seq data and accurately profile them through clustering approaches. Further information on transcript abundances from subpopulations of single cells can be analyzed at a lower sequencing effort. The methods also allow for linking TCR alpha and beta chains at the single cell level.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: July 18, 2023
    Assignees: The Broad Institute, Inc., Massachusetts Institute of Technology
    Inventors: Paul Blainey, Navpreet Ranu, Todd Gierahn, J. Christopher Love
  • Publication number: 20230104171
    Abstract: Compositions are disclosed that include alum and a SARS-CoV-2 Spike (S) glycoprotein variant covalently bound to the alum via at least one linker having 2-12 phosphoserine residues, where the S glycoprotein variant includes a receptor binding domain (RBD) having a mutation of at least one amino acid residue in an angiotensin-converting enzyme 2 (ACE2) receptor binding motif (RBM) relative to a wild-type RBD, where the residue is (i) hydrophobic; and (ii) within an aggregation-prone region of about 3-15 amino acid residues, and the mutation is a substitution of the hydrophobic residue with a different amino acid residue; as are compositions and vaccines including the compositions, and methods for their use.
    Type: Application
    Filed: July 29, 2022
    Publication date: April 6, 2023
    Inventors: Kristen Alexandra Rodrigues, Sergio A. Rodriguez Aponte, Neil Dalvie, Darrell Irvine, J. Christopher Love
  • Publication number: 20230053902
    Abstract: Aspects of the present disclosure relate to systems and methods for manufacturing biologically-produced pharmaceutical products. Some of the systems described herein comprise an upstream component comprising a bioreactor and at least one filter (e.g., a filter probe) integrated with a downstream component comprising a purification module comprising at least a first partitioning unit and a second partitioning unit. In some embodiments; these integrated biomanufacturing systems may be operated under continuous or conditions and may be capable of efficiently producing pure, high-quality pharmaceutical products.
    Type: Application
    Filed: March 9, 2022
    Publication date: February 23, 2023
    Applicants: Massachusetts Institute of Technology, Rensselaer Polytechnic Institute
    Inventors: J. Christopher Love, Kerry R. Love, Laura Crowell, Alan Stockdale, Richard Dean Braatz, Amos Enshen Lu, Steven Cramer, Steven Timmick, Nicholas Vecchiarello, Chaz Goodwine, Craig A. Mascarenhas
  • Publication number: 20220133880
    Abstract: The present disclosure relates to, inter alia, variants of the receptor binding domain of a coronavirus (e.g., SARS-CoV-2) having increased immunogenicity and reduced aggregation, and the use of the RBD variants in methods for preventing infection of the coronavirus.
    Type: Application
    Filed: October 28, 2021
    Publication date: May 5, 2022
    Inventors: J. Christopher LOVE, Sergio Andre RODRIGUEZ APONTE, Neil Chandra DALVIE
  • Publication number: 20220032257
    Abstract: Screening assays and methods of performing such assays are provided. In certain examples, the assays and methods may be designed to determine whether or not two or more species can associate with each other. In some examples, the assays and methods may be used to determine if a known antigen binds to an unknown monoclonal antibody.
    Type: Application
    Filed: September 20, 2021
    Publication date: February 3, 2022
    Inventors: J. Christopher Love, Hidde L. Ploegh, Jehnna Ronan
  • Patent number: 11154833
    Abstract: Screening assays and methods of performing such assays are provided. In certain examples, the assays and methods may be designed to determine whether or not two or more species can associate with each other. In some examples, the assays and methods may be used to determine if a known antigen binds to an unknown monoclonal antibody.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: October 26, 2021
    Assignee: President and Fellows of Harvard College
    Inventors: J. Christopher Love, Hidde L. Ploegh, Jehnna Ronan
  • Publication number: 20210170411
    Abstract: Isolating or identifying a cell based on a physical property of said cell can include providing a cell suspension; passing said suspension through a microfluidic channel that includes a constriction; passing the cell suspension through the constriction; and, contacting said cell suspension solution with a compound. The constriction can be sized to preferentially deform a relatively larger cell compared to a relatively smaller cell.
    Type: Application
    Filed: October 20, 2020
    Publication date: June 10, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Armon R. Sharei, Viktor A. Adalsteinsson, Nahyun Cho, Robert S. Langer, J. Christopher Love, Klavs F. Jensen
  • Patent number: 10987636
    Abstract: Aspects of the present disclosure relate to filtration systems and methods for production of biologically-produced products, which may include pharmaceutical and/or protein products. Certain biomanufacturing systems described herein comprise a bioreactor (e.g., a perfusion bioreactor, a chemostat) and a filter probe comprising a filter bundle comprising a plurality of hollow fibers (e.g., longitudinally aligned hollow fibers). According to some embodiments, a center-to-center distance between any two hollow fibers within the fiber bundle at one or more points along a length of the fiber bundle is relatively large (e.g., greater than or equal to an average outer diameter of the hollow fibers of the fiber bundle, greater than or equal to 1.1 times a minimum diameter of the two hollow fibers). In some embodiments, the hollow fibers within the fiber bundle are arranged in an array (e.g., a hexagonal, linear, annular, or square array).
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: April 27, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: J. Christopher Love, Craig A. Mascarenhas, Amos Enshen Lu, Richard Dean Braatz
  • Publication number: 20210102933
    Abstract: The invention provides a method for isolating particular members from a library of variant cells in individual microreactors, wherein the phenotype of the biomolecule secreted by the cell is evaluated on the basis of multiple parameters, including substrate specificity and kinetic efficiency.
    Type: Application
    Filed: September 16, 2020
    Publication date: April 8, 2021
    Inventors: J. Christopher Love, Kerry Love
  • Publication number: 20210087610
    Abstract: The invention includes methods for enriching for T cell receptor- or B cell receptor-encoding transcripts from a single cell RNA sequencing library, (ii) sequencing T cell receptor- or B cell receptor-encoding transcripts from a single cell RNA sequencing library, and (iii) targeted tagmentation of T cell receptor- or B cell receptor-encoding transcripts.
    Type: Application
    Filed: January 12, 2018
    Publication date: March 25, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Todd Michael Gierahn, Ang Tu, J. Christopher Love
  • Publication number: 20200399646
    Abstract: Described are expression constructs, cells, and methods of producing proteins in Pichia pastoris.
    Type: Application
    Filed: January 10, 2018
    Publication date: December 24, 2020
    Applicant: Massachusetts Institute of Technology
    Inventors: Kerry R. Love, J. Christopher Love, Charles Whittaker, Joseph Brady, Catherine Bartlett Matthews, Noelle Colant, Neil C. Dalvie
  • Patent number: 10870112
    Abstract: Isolating or identifying a cell based on a physical property of said cell can include providing a cell suspension; passing said suspension through a microfluidic channel that includes a constriction; passing the cell suspension through the constriction; and, contacting said cell suspension solution with a compound. The constriction can be sized to preferentially deform a relatively larger cell compared to a relatively smaller cell.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: December 22, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Armon R. Sharei, Viktor A. Adalsteinsson, Nahyun Cho, Robert S. Langer, J. Christopher Love, Klavs F. Jensen
  • Publication number: 20200372241
    Abstract: Described herein are systems, methods, and apparatus for automatically identifying and recovering individual cells of interest from a sample of biological matter, e.g., a biological fluid. Also described are methods of enriching a cell type of interest. These systems, methods, and apparatus allow for coordinated performance of two or more of the following, e.g., all with the same device, thereby enabling high throughput: cell enrichment, cell identification, and individual cell recovery for further analysis (e.g., sequencing) of individual recovered cells.
    Type: Application
    Filed: August 11, 2020
    Publication date: November 26, 2020
    Inventors: Viktor A. Adalsteinsson, Denis Loginov, J. Christopher Love, Alan Stockdale, Todd Gierahn