Patents by Inventor J. Dennis Keller

J. Dennis Keller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7192829
    Abstract: Floating gate transistors and methods of forming the same are described. In one implementation, a floating gate is formed over a substrate. The floating gate has an inner first portion and an outer second portion. Conductivity enhancing impurity is provided in the inner first portion to a greater concentration than conductivity enhancing impurity in the outer second portion. In another implementation, the floating gate is formed from a first layer of conductively doped semiconductive material and a second layer of substantially undoped semiconductive material. In another implementation, the floating gate is formed from a first material having a first average grain size and a second material having a second average grain size which is larger than the first average grain size.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: March 20, 2007
    Assignee: Micron Technology, Inc.
    Inventors: J. Dennis Keller, Roger R. Lee
  • Patent number: 7057285
    Abstract: An aluminum interconnect which extends adjacent to and is insulated from a stacked capacitor structure to facilitate electrical communication between an active device region of a semiconductor substrate of a semiconductor device structure and a bit line extending above the semiconductor substrate. The aluminum interconnect is disposed within a trench and may include a metal silicide layer adjacent the active device region to form a buried metal diffusion layer. The aluminum interconnect may also include a metal nitride layer disposed between the metal silicide and aluminum. The invention also includes methods of fabricating aluminum interconnects adjacent stacked capacitor structures and semiconductor device structures which include the aluminum interconnects.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: June 6, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Ruojia Lee, Ralph Kauffman, J. Dennis Keller
  • Patent number: 6791141
    Abstract: Floating gate transistors and methods of forming the same are described. In one implementation, a floating gate is formed over a substrate. The floating gate has an inner first portion and an outer second portion. Conductivity enhancing impurity is provided in the inner first portion to a greater concentration than conductivity enhancing impurity in the outer second portion. In another implementation, the floating gate is formed from a first layer of conductively doped semiconductive material and a second layer of substantially undoped semiconductive material. In another implementation, the floating gate is formed from a first material having a first average grain size and a second material having a second average grain size which is larger than the first average grain size.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: September 14, 2004
    Assignee: Micron Technology, Inc.
    Inventors: J. Dennis Keller, Roger R. Lee
  • Patent number: 6787428
    Abstract: An aluminum interconnect which extends adjacent to and is insulated from a stacked capacitor structure to facilitate electrical communication between an active device region of a semiconductor substrate of a semiconductor device structure and a bit line extending above the semiconductor substrate. The aluminum interconnect is disposed within a trench and may include a metal silicide layer adjacent the active device region to form a buried metal diffusion layer. The aluminum interconnect may also include a metal nitride layer disposed between the metal silicide and aluminum. The invention also includes methods of fabricating aluminum interconnects adjacent stacked capacitor structures and semiconductor device structures which include the aluminum interconnects.
    Type: Grant
    Filed: June 26, 2002
    Date of Patent: September 7, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Ruojia Lee, Ralph Kauffman, J. Dennis Keller
  • Patent number: 6720605
    Abstract: An aluminum interconnect which extends adjacent to and is insulated from a stacked capacitor structure to facilitate electrical communication between an active device region of a semiconductor substrate of a semiconductor device structure and a bit line extending above the semiconductor substrate. The aluminum interconnect is disposed within a trench and may include a metal silicide layer adjacent the active device region to form a buried metal diffusion layer. The aluminum interconnect may also include a metal nitride layer disposed between the metal silicide and aluminum. The invention also includes methods of fabricating aluminum interconnects adjacent stacked capacitor structures and semiconductor device structures which include the aluminum interconnects.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: April 13, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Ruojia Lee, Ralph Kauffman, J. Dennis Keller
  • Publication number: 20020177272
    Abstract: An aluminum interconnect which extends adjacent to and is insulated from a stacked capacitor structure to facilitate electrical communication between an active device region of a semiconductor substrate of a semiconductor device structure and a bit line extending above the semiconductor substrate. The aluminum interconnect is disposed within a trench and may include a metal silicide layer adjacent the active device region to form a buried metal diffusion layer. The aluminum interconnect may also include a metal nitride layer disposed between the metal silicide and aluminum. The invention also includes methods of fabricating aluminum interconnects adjacent stacked capacitor structures and semiconductor device structures which include the aluminum interconnects.
    Type: Application
    Filed: June 26, 2002
    Publication date: November 28, 2002
    Inventors: Ruojia Lee, Ralph Kauffman, J. Dennis Keller
  • Patent number: 6465319
    Abstract: An aluminum interconnect which extends adjacent to and is insulated from a stacked capacitor structure to facilitate electrical communication between an active device region of a semiconductor substrate of a semiconductor device structure and a bit line extending above the semiconductor substrate. The aluminum interconnect is disposed within a trench and may include a metal silicide layer adjacent the active device region to form a buried metal diffusion layer. The aluminum interconnect may also include a metal nitride layer disposed between the metal silicide and aluminum. The invention also includes methods of fabricating aluminium interconnects adjacent stacked capacitor structures and semiconductor device structures which include the aluminum interconnects.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: October 15, 2002
    Assignee: Micron Technology, Inc.
    Inventors: Ruojia Lee, Ralph Kauffman, J. Dennis Keller
  • Publication number: 20010021549
    Abstract: Floating gate transistors and methods of forming the same are described. In one implementation, a floating gate is formed over a substrate. The floating gate has an inner first portion and an outer second portion. Conductivity enhancing impurity is provided in the inner first portion to a greater concentration than conductivity enhancing impurity in the outer second portion. In another implementation, the floating gate is formed from a first layer of conductively doped semiconductive material and a second layer of substantially undoped semiconductive material. In another implementation, the floating gate is formed from a first material having a first average grain size and a second material having a second average grain size which is larger than the first average grain size.
    Type: Application
    Filed: July 17, 1998
    Publication date: September 13, 2001
    Inventors: J. DENNIS KELLER, ROGER R. LEE
  • Patent number: 6165863
    Abstract: An aluminum interconnect which extends adjacent to and is insulated from a stacked capacitor structure to facilitate electrical communication between an active device region of a semiconductor substrate of a semiconductor device structure and a bit line extending above the semiconductor substrate. The aluminum interconnect is disposed within a trench and may include a metal silicide layer adjacent the active device region to form a buried metal diffusion layer. The aluminum interconnect may also include a metal nitride layer disposed between the metal silicide and aluminum. The invention also includes methods of fabricating aluminum interconnects adjacent stacked capacitor structures and semiconductor device structures which include the aluminum interconnects.
    Type: Grant
    Filed: June 22, 1998
    Date of Patent: December 26, 2000
    Assignee: Micron Technology, Inc.
    Inventors: Ruojia Lee, Ralph Kauffman, J. Dennis Keller
  • Patent number: 5985719
    Abstract: A method of reducing undesired electron depletion through sidewalls of a floating gate of a floating gate transistor comprising providing a non-oxide or oxynitride layer over said sidewalls. Integrated circuitry including a non-volatile field effect transistor includes, a) a floating gate transistor having a gate construction and a pair of opposing source/drain regions, the gate construction having at least one sidewall; b) a shielding layer over the gate sidewall; and c) a dielectric layer on the shielding layer, the dielectric layer being of a different material than the shielding layer. The shielding layer might be provided over an oxide layer previously provided on sidewalls of the gate construction. The shielding layer might be provided over sidewall spacers previously provided relative to sidewalls of the gate construction. Example and preferred shielding layer materials include Si.sub.3 N.sub.4, oxynitride compounds, and aluminum.
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: November 16, 1999
    Assignee: Micron Technology, Inc.
    Inventors: J. Dennis Keller, Roger R. Lee
  • Patent number: 5726471
    Abstract: A method of reducing undesired electron depletion through sidewalls of a floating gate of a floating gate transistor comprising providing a non-oxide or oxynitride layer over said sidewalls. Integrated circuitry including a non-volatile field effect transistor includes, a) a floating gate transistor having a gate construction and a pair of opposing source/drain regions, the gate construction having at least one sidewall; b) a shielding layer over the gate sidewall; and c) a dielectric layer on the shielding layer, the dielectric layer being of a different material than the shielding layer. The shielding layer might be provided over an oxide layer previously provided on sidewalls of the gate construction. The shielding layer might be provided over sidewall spacers previously provided relative to sidewalls of the gate construction. Example and preferred shielding layer materials include Si.sub.3 N.sub.4, oxynitride compounds, and aluminum.
    Type: Grant
    Filed: November 4, 1996
    Date of Patent: March 10, 1998
    Assignee: Micron Technology, Inc.
    Inventors: J. Dennis Keller, Roger R. Lee
  • Patent number: 5707898
    Abstract: A method of reducing undesired electron depletion through sidewalls of a floating gate of a floating gate transistor comprising providing a non-oxide or oxynitride layer over said sidewalls. Integrated circuitry including a non-volatile field effect transistor includes, a) a floating gate transistor having a gate construction and a pair of opposing source/drain regions, the gate construction having at least one sidewall; b) a shielding layer over the gate sidewall; and c) a dielectric layer on the shielding layer, the dielectric layer being of a different material than the shielding layer. The shielding layer might be provided over an oxide layer previously provided on sidewalls of the gate construction. The shielding layer might be provided over sidewall spacers previously provided relative to sidewalls of the gate construction. Example and preferred shielding layer materials include Si.sub.3 N.sub.4, oxynitride compounds, and aluminum.
    Type: Grant
    Filed: April 1, 1996
    Date of Patent: January 13, 1998
    Assignee: Micron Technology, Inc.
    Inventors: J. Dennis Keller, Roger R. Lee
  • Patent number: 5292681
    Abstract: Disclosed is fabricating a semiconductor wafer to form a memory array and peripheral area, the array comprising nonvolatile memory devices employing floating gate transistors and the peripheral area comprising CMOS transistors. A first layer of conductive material is applied atop insulating layers. A dielectric layer is applied atop the first conductive layer for use in floating gate transistors within the array. The dielectric layer and first conductive material are etched from the peripheral area, leaving patterned dielectric material and first conductive material in the array. A second layer of conductive material is applied atop the wafer to cover the peripheral area and dielectric layer of the array. The conductive and dielectric materials of the array are patterned and etched separately from the patterning and etching of conductive material of each of the first and second conductivity type CMOS transistors of the peripheral area.
    Type: Grant
    Filed: September 16, 1993
    Date of Patent: March 8, 1994
    Assignee: Micron Semiconductor, Inc.
    Inventors: Roger R. Lee, Tyler A. Lowrey, Fernando Gonzalez, J. Dennis Keller