Patents by Inventor J. Douglas Birdwell

J. Douglas Birdwell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10248675
    Abstract: A circuit element of a multi-dimensional dynamic adaptive neural network array (DANNA) may comprise a neuron/synapse select input functional to select the circuit element to function as one of a neuron and a synapse. In one embodiment of a DANNA array of such circuit elements, (wherein a circuit element may be digital), a destination neuron may be connected to a first neuron by a first synapse in one dimension a second destination neuron may be connected to the first neuron by a second synapse in a second dimension to form linked columns and rows of neuron/synapse circuit elements. In one embodiment, the rows and columns of circuit elements have read registers that are linked together by signal lines and clocked and controlled so as to output columnar data to an output register when a neuron/synapse data value is stored in the read register.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: April 2, 2019
    Assignee: University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Mark E. Dean, Catherine Schuman
  • Patent number: 10095718
    Abstract: A circuit element of a multi-dimensional dynamic adaptive neural network array (DANNA) may comprise a neuron/synapse select input functional to select the circuit element to function as one of a neuron and a synapse. In one embodiment of a DANNA array of such circuit elements, (wherein a circuit element or component thereof may be analog or digital), a destination neuron may be connected to a first neuron by a first synapse in one dimension, a second destination neuron may be connected to the first neuron by a second synapse in a second dimension and, optionally, a third destination neuron may be connected to the first neuron by a third synapse. The DANNA may thus form multiple levels of neuron and synapse circuit elements. In one embodiment, multiples of eight inputs may be selectively received by the circuit element selectively functioning as one of a neuron and a synapse.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: October 9, 2018
    Assignee: University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Mark E. Dean, Catherine Schuman
  • Patent number: 10055434
    Abstract: A digital circuit element of a two dimensional dynamic adaptive neural network array (DANNA) may comprise a neuron/synapse select input functional to select the digital circuit element to function as one of a neuron and a synapse. In one embodiment of a DANNA array of such digital circuit elements, a destination neuron may be connected to a first neuron by a first synapse in one dimension, a second destination neuron may be connected to the first neuron by a second synapse in a second dimension and, optionally, a third destination neuron may be connected to the first neuron by a third synapse thus forming multiple levels of neuron and synapse digital circuit elements. In one embodiment, multiples of eight inputs may be selectively received by the digital circuit element selectively functioning as one of a neuron and a synapse.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: August 21, 2018
    Assignee: University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Mark E. Dean, Catherine Schuman
  • Patent number: 10019470
    Abstract: A method and apparatus for constructing a neuroscience-inspired artificial neural network (NIDA) or a dynamic adaptive neural network array (DANNA) or combinations of substructures thereof comprises one of constructing a substructure of an artificial neural network for performing a subtask of the task of the artificial neural network or extracting a useful substructure based on one of activity, causality path, behavior and inputs and outputs. The method includes identifying useful substructures in artificial neural networks that may be either successful at performing a subtask or unsuccessful at performing a subtask. Successful substructures may be implanted in an artificial neural network and unsuccessful substructures may be extracted from the artificial neural network for performing the task.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: July 10, 2018
    Assignee: University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Mark E. Dean, Catherine Schuman
  • Patent number: 9798751
    Abstract: A method and apparatus for constructing a neuroscience-inspired dynamic architecture (NIDA) for an artificial neural network is disclosed. The method comprises constructing, in one embodiment, an artificial neural network embodiment in a multi-dimensional space in memory such that a neuron is connected by a synapse to another neuron. The neuron and the synapse each have parameters and have features of long-term potentiation and long-term depression. Furthermore, crossover and mutation are employed to select children of parents. Through learning, an initial network may evolve into a different network when NIDA is applied to solve different problems of control, anomaly detection and classification over selected time units. The apparatus comprises in one embodiment a computational neuroscience-inspired artificial neural network with at least one affective network coupled to receive input data from an environment and to output data to the environment.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: October 24, 2017
    Assignee: University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Catherine Schuman
  • Patent number: 9753959
    Abstract: A method and apparatus for constructing one of a neuroscience-inspired artificial neural network and a neural network array comprises one of a neuroscience-inspired dynamic architecture, a dynamic artificial neural network array and a neural network array of electrodes associated with neural tissue such as a brain, the method and apparatus having a special purpose display processor. The special purpose display processor outputs a display over a period of selected reference time units to demonstrate a neural pathway from, for example, one or a plurality of input neurons through intermediate destination neurons to an output neuron in three dimensional space. The displayed neural network may comprise neurons and synapses in different colors and may be utilized, for example, to show the behavior of a neural network for classifying hand-written digits between values of 0 and 9 or recognizing vertical/horizontal lines in a grid image of lines.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: September 5, 2017
    Assignee: University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Mark E. Dean, Margaret Drouhard, Catherine Schuman
  • Patent number: 9582639
    Abstract: Mobile telecommunications or personal computing apparatus may be specially programmed for predicting whether an unknown biological specimen of an individual to be identified originates from or is related to a member of a particular family. The apparatus may comprise an input device including a barcode reader and a virtual touch screen keyboard whereby DNA profile or mass spectrometry test data may be entered among other data for an individual to be identified, for example, a missing person, victim, crime perpetrator or other unknown individual in hypothetical relationship to another individual or to a family pedigree of typed family members. The typed family pedigree in relation to the individual to be identified in hypothetical relation may be displayed on an output display of the apparatus including at least two different profile typing indicators for each displayed member of the pedigree.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: February 28, 2017
    Assignee: University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Carl G. Sapp, N. Quentin Haas, Scott Hansen, Timothy R. Wentz
  • Patent number: 9235733
    Abstract: A biometric mobile device is capable of interacting with existing cellular, wireless, and wired telecommunication and other communication networks to support intelligence gathering, human body identification, special operations and other applications. A method of collecting biometric data at an accident or crime scene may comprise, for example, utilizing a camera to photograph the accident scene, collecting key entered data that may not be otherwise obtainable, using a fingerprint scanner to collect, digitize and store fingerprint data, using a lab-on-a-chip DNA profile device for collecting and analyzing a DNA specimen and generating identification and DNA profile data for bar code entry and other means for collecting any known form of biometric data including, but not limited to, vascular facial structure, dental structure, cornea, iris or other data which may be unique or limiting for identification purposes.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: January 12, 2016
    Inventors: J. Douglas Birdwell, N. Quentin Haas, Scott F. Hansen
  • Publication number: 20150317344
    Abstract: Method and apparatus for predicting properties of a target object comprise application of a search manager for analyzing parameters of a plurality of databases for a plurality of objects, the databases comprising an electrical, electromagnetic, acoustic and thermal spectral database (ESD), a micro-body assemblage database (MAD) and a database of image data whereby the databases store data objects containing identifying features, source information and information on site properties and context including time and frequency varying data. The method comprises application of multivariate statistical analysis and principal component analysis in combination with content-based image retrieval for providing two-dimensional attributes of three dimensional objects, for example, via preferential image segmentation using a tree of shapes and to predict further properties of objects by means of k-means clustering and related methods.
    Type: Application
    Filed: June 19, 2014
    Publication date: November 5, 2015
    Applicants: UNIVERSITY OF TENNESSEE RESEARCH FOUNDATION, The United States of America as Represented by the Secretary of the Army
    Inventors: J. Douglas Birdwell, Tse-Wei Wang, David J. Icove, Sally P. Horn, Roger Horn, Mark S. Rader, Dale V. Stansberry
  • Publication number: 20150106306
    Abstract: A method and apparatus for constructing one of a neuroscience-inspired artificial neural network and a neural network array comprises one of a neuroscience-inspired dynamic architecture, a dynamic artificial neural network array and a neural network array of electrodes associated with neural tissue such as a brain, the method and apparatus having a special purpose display processor. The special purpose display processor outputs a display over a period of selected reference time units to demonstrate a neural pathway from, for example, one or a plurality of input neurons through intermediate destination neurons to an output neuron in three dimensional space. The displayed neural network may comprise neurons and synapses in different colors and may be utilized, for example, to show the behavior of a neural network for classifying hand-written digits between values of 0 and 9 or recognizing vertical/horizontal lines in a grid image of lines.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: J. Douglas Birdwell, Mark E. Dean, Margaret Drouhard, Catherine Schuman
  • Publication number: 20150106314
    Abstract: A circuit element of a multi-dimensional dynamic adaptive neural network array (DANNA) may comprise a neuron/synapse select input functional to select the circuit element to function as one of a neuron and a synapse. In one embodiment of a DANNA array of such circuit elements, (wherein a circuit element or component thereof may be analog or digital), a destination neuron may be connected to a first neuron by a first synapse in one dimension, a second destination neuron may be connected to the first neuron by a second synapse in a second dimension and, optionally, a third destination neuron may be connected to the first neuron by a third synapse. The DANNA may thus form multiple levels of neuron and synapse circuit elements. In one embodiment, multiples of eight inputs may be selectively received by the circuit element selectively functioning as one of a neuron and a synapse.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: J. Douglas Birdwell, Mark E. Dean, Catherine Schuman
  • Publication number: 20150106316
    Abstract: A circuit element of a multi-dimensional dynamic adaptive neural network array (DANNA) may comprise a neuron/synapse select input functional to select the circuit element to function as one of a neuron and a synapse. In one embodiment of a DANNA array of such circuit elements, (wherein a circuit element may be digital), a destination neuron may be connected to a first neuron by a first synapse in one dimension a second destination neuron may be connected to the first neuron by a second synapse in a second dimension to form linked columns and rows of neuron/synapse circuit elements. In one embodiment, the rows and columns of circuit elements have read registers that are linked together by signal lines and clocked and controlled so as to output columnar data to an output register when a neuron/synapse data value is stored in the read register.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: J. Douglas Birdwell, Mark E. Dean, Catherine Schuman
  • Publication number: 20150106315
    Abstract: A digital circuit element of a two dimensional dynamic adaptive neural network array (DANNA) may comprise a neuron/synapse select input functional to select the digital circuit element to function as one of a neuron and a synapse. In one embodiment of a DANNA array of such digital circuit elements, a destination neuron may be connected to a first neuron by a first synapse in one dimension, a second destination neuron may be connected to the first neuron by a second synapse in a second dimension and, optionally, a third destination neuron may be connected to the first neuron by a third synapse thus forming multiple levels of neuron and synapse digital circuit elements. In one embodiment, multiples of eight inputs may be selectively received by the digital circuit element selectively functioning as one of a neuron and a synapse.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: J. Douglas Birdwell, Mark E. Dean, Catherine Schuman
  • Publication number: 20150106311
    Abstract: A method and apparatus for constructing a neuroscience-inspired artificial neural network (NIDA) or a dynamic adaptive neural network array (DANNA) or combinations of substructures thereof comprises one of constructing a substructure of an artificial neural network for performing a subtask of the task of the artificial neural network or extracting a useful substructure based on one of activity, causality path, behavior and inputs and outputs. The method includes identifying useful substructures in artificial neural networks that may be either successful at performing a subtask or unsuccessful at performing a subtask. Successful substructures may be implanted in an artificial neural network and unsuccessful substructures may be extracted from the artificial neural network for performing the task.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: J. Douglas Birdwell, Mark E. Dean, Catherine Schuman
  • Publication number: 20150106310
    Abstract: A method and apparatus for constructing a neuroscience-inspired dynamic architecture (NIDA) for an artificial neural network is disclosed. The method comprises constructing, in one embodiment, an artificial neural network embodiment in a multi-dimensional space in memory such that a neuron is connected by a synapse to another neuron. The neuron and the synapse each have parameters and have features of long-term potentiation and long-term depression. Furthermore, crossover and mutation are employed to select children of parents. Through learning, an initial network may evolve into a different network when NIDA is applied to solve different problems of control, anomaly detection and classification over selected time units. The apparatus comprises in one embodiment a computational neuroscience-inspired artificial neural network with at least one affective network coupled to receive input data from an environment and to output data to the environment.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: J. Douglas Birdwell, Catherine Schuman
  • Publication number: 20140297546
    Abstract: Method and apparatus for predicting properties of a target object comprise application of a search manager for analyzing parameters of a plurality of databases for a plurality of objects, the databases comprising an electrical, electromagnetic, acoustic spectral database (ESD), a micro-body assemblage database (MAD) and a database of image data whereby the databases store data objects containing identifying features, source information and information on site properties and context including time and frequency varying data. The method comprises application of multivariate statistical analysis and principal component analysis in combination with content-based image retrieval for providing two-dimensional attributes of three dimensional objects, for example, via preferential image segmentation using a tree of shapes and to predict further properties of objects by means of k-means clustering and related methods.
    Type: Application
    Filed: June 16, 2014
    Publication date: October 2, 2014
    Applicant: University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Tse-Wei Wang, David J. Icove, Sally P. Horn
  • Publication number: 20140257047
    Abstract: A suite of components comprising an objective measurement medical data collection device and a cohort database may standardize, simplify, and objectify clinical outcomes tracking, culminating in population health measurements within the restorative neurosciences such as Parkinson disease individuals diagnosed with a disease. A data collection device may comprise one or more of a gyroscope, an accelerometer, a locator, a camera and a magnetometer for collecting, for example, data related to tremors experienced by the individuals diagnosed with disease and receive instruction data responsive to evaluation of the collected data in relation to the cohort database.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 11, 2014
    Inventors: Karl A. Sillay, J. Douglas Birdwell
  • Patent number: 8775428
    Abstract: Method and apparatus for predicting properties of a target object comprise application of a search manager for analyzing parameters of a plurality of databases for a plurality of objects, the databases comprising an electrical, electromagnetic, acoustic and thermal spectral database (ESD), a micro-body assemblage database (MAD) and a database of image data whereby the databases store data objects containing identifying features, source information and information on site properties and context including time and frequency varying data. The method comprises application of multivariate statistical analysis and principal component analysis in combination with content-based image retrieval for providing two-dimensional attributes of three dimensional objects, for example, via preferential image segmentation using a tree of shapes and to predict further properties of objects by means of k-means clustering and related methods.
    Type: Grant
    Filed: February 7, 2013
    Date of Patent: July 8, 2014
    Assignees: The United States of America as Represented by the Secretary of the Army, University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Tse-Wei Wang, David J. Icove, Sally P. Horn, Roger Horn, Mark S. Rader, Dale V. Stansberry
  • Patent number: 8775427
    Abstract: Method and apparatus for predicting properties of a target object comprise application of a search manager for analyzing parameters of a plurality of databases for a plurality of objects, the databases comprising an electrical, electromagnetic, acoustic spectral database (ESD), a micro-body assemblage database (MAD) and a database of image data whereby the databases store data objects containing identifying features, source information and information on site properties and context including time and frequency varying data. The method comprises application of multivariate statistical analysis and principal component analysis in combination with content-based image retrieval for providing two-dimensional attributes of three dimensional objects, for example, via preferential image segmentation using a tree of shapes and to predict further properties of objects by means of k-means clustering and related methods.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: July 8, 2014
    Assignee: University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Tse-Wei Wang, David J. Icove, Sally P. Horn
  • Patent number: 8762379
    Abstract: Method and apparatus for predicting properties of a target object comprise application of a search manager for analyzing parameters of a plurality of databases for a plurality of objects, the databases comprising an electrical, electromagnetic, acoustic spectral database (ESD), a micro-body assemblage database (MAD) and a database of image data whereby the databases store data objects containing identifying features, source information and information on site properties and context including time and frequency varying data. The method comprises application of multivariate statistical analysis and principal component analysis in combination with content-based image retrieval for providing two-dimensional attributes of three dimensional objects, for example, via preferential image segmentation using a tree of shapes and to predict further properties of objects by means of k-means clustering and related methods.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: June 24, 2014
    Assignee: University of Tennessee Research Foundation
    Inventors: J. Douglas Birdwell, Tse-Wei Wang, David J. Icove, Sally P. Horn