Patents by Inventor J. Elon Graves

J. Elon Graves has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10389442
    Abstract: A detector configuration for use in a free space optical (FSO) node for transmitting and/or receiving optical signals has a plurality of sensors for detecting received optical signals. The plurality of sensors is configured along a common optical path and are used for separate functions. According, the detectors may be optimized for the respective function.
    Type: Grant
    Filed: November 16, 2017
    Date of Patent: August 20, 2019
    Assignee: SA Photonics, Inc.
    Inventors: J. Elon Graves, William Dickson, Greg Mitchell, Andy McClaren, Dave Pechner
  • Patent number: 10215936
    Abstract: A detector configuration for use in a free space optical (FSO) node for transmitting and/or receiving optical signals has a plurality of sensors for detecting received optical signals. The system may be configured to modify or alter the light at the plurality of sensor to optimize different system functions.
    Type: Grant
    Filed: October 19, 2017
    Date of Patent: February 26, 2019
    Assignee: SA Photonics, Inc.
    Inventors: J. Elon Graves, William Dickson, Greg Mitchell, Andy McClaren, Dave Pechner
  • Patent number: 9973274
    Abstract: A fast tracking module for use in free space optical communications includes a primary motion stage supporting receive optics, where the primary motion stage is configured to move the receive optic relative to an optical path.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: May 15, 2018
    Assignee: SA Photonics, Inc.
    Inventors: J. Elon Graves, David Pechner, Andrew Olson
  • Publication number: 20180083700
    Abstract: A detector configuration for use in a free space optical (FSO) node for transmitting and/or receiving optical signals has a plurality of sensors for detecting received optical signals. The plurality of sensors is configured along a common optical path and are used for separate functions. According, the detectors may be optimized for the respective function.
    Type: Application
    Filed: November 16, 2017
    Publication date: March 22, 2018
    Inventors: J. Elon Graves, William Dickson, Greg Mitchell, Andy McClaren, Dave Pechner
  • Publication number: 20180039032
    Abstract: A detector configuration for use in a free space optical (FSO) node for transmitting and/or receiving optical signals has a plurality of sensors for detecting received optical signals. The system may be configured to modify or alter the light at the plurality of sensor to optimize different system functions.
    Type: Application
    Filed: October 19, 2017
    Publication date: February 8, 2018
    Inventors: J. Elon Graves, William Dickson, Greg Mitchell, Andy McClaren, Dave Pechner
  • Patent number: 9810862
    Abstract: A detector configuration for use in a free space optical (FSO) node for transmitting and/or receiving optical signals has a plurality of sensors for detecting received optical signals. The system may be configured to modify or alter the light at the plurality of sensor to optimize different system functions.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: November 7, 2017
    Assignee: SA Photonics, Inc.
    Inventors: J. Elon Graves, William Dickson, Greg Mitchell, Andy McClaren, Dave Pechner
  • Publication number: 20170052334
    Abstract: A detector configuration for use in a free space optical (FSO) node for transmitting and/or receiving optical signals has a plurality of sensors for detecting received optical signals. The system may be configured to modify or alter the light at the plurality of sensor to optimize different system functions.
    Type: Application
    Filed: August 22, 2016
    Publication date: February 23, 2017
    Inventors: J. Elon Graves, William Dickson, Greg Mitchell, Andy McClaren, Dave Pechner
  • Publication number: 20170054499
    Abstract: A detector configuration for use in a free space optical (FSO) node for transmitting and/or receiving optical signals has a plurality of sensors for detecting received optical signals. The plurality of sensors is configured along a common optical path and are used for separate functions. According, the detectors may be optimized for the respective function.
    Type: Application
    Filed: August 22, 2016
    Publication date: February 23, 2017
    Inventors: J. Elon Graves, William Dickson, Greg Mitchell, Andy McClaren, Dave Pechner
  • Patent number: 9544052
    Abstract: A low cost, high reliability system for correcting aberrations in optical signals is disclosed. A foreoptic assembly, such as a telescope, receives an incoming optical signal and directs it to an active optical element, such as a fast steering mirror. The incoming optical signal is diffracted by a diffractive optical element to shape the image that is formed at a wavefront sensor, such as a quad-cell. The wavefront sensor measures a tip-tilt aberration of the incoming optical signal and the active optical element is adjusted to correct the measured aberration. An outgoing optical signal can be transmitted along substantially the same optical path as the incoming optical signal, but in the opposite direction. Thus, the aberration measured from the incoming optical signal can be automatically accounted for in the outgoing optical signal.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: January 10, 2017
    Assignee: AOptix Technologies, Inc.
    Inventors: Malcolm J. Northcott, J. Elon Graves, Siegfried Fleischer, Paolo Zambon, Jeffrey Tuttle, Yu Chun Chang
  • Publication number: 20150301321
    Abstract: A Cassegrain telescope uses a pivoted corrector plate to reduce back-reflections. A converging lens is added to the optical path inside a housing of the telescope to focus the light within the telescope. The modified Cassegrain design may be used a hybrid radio frequency and free-space optical commercial communications network.
    Type: Application
    Filed: March 13, 2013
    Publication date: October 22, 2015
    Applicant: AOptix Technologies, Inc.
    Inventors: J. Elon Graves, Malcolm J. Northcott, Seigfried Fleischer, Rebecca Chang, Paolo Zambon
  • Patent number: 9166684
    Abstract: A stabilized ultra-high bandwidth capacity transceiver system that combines an E-band (71-76 GHz, 81-86 GHz) millimeter wave RF transceiver with an eye-safe adaptive optics Free Space Optical (FSO) transceiver as a combined apparatus for simultaneous point-to-point commercial communications. The apparatus has a high degree of assured carrier availability under stressing environmental conditions. The apparatus establishes and maintains pointing and stabilization of mmW RF and FSO optical beams between adjacent line of sight apparatuses. The apparatus can rapidly acquire and reacquire the FSO optical carrier link in the event the optical carrier link is impaired due to adverse weather.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: October 20, 2015
    Assignee: Aoptix Technologies, Inc.
    Inventors: Chandrasekhar Pusarla, Srinivas Sivaprakasam, Joseph Shiran, Malcolm J. Northcott, J. Elon Graves, Howard Dando, Santanu Basu, Siegfried Fleischer
  • Publication number: 20150098707
    Abstract: A stabilized ultra-high bandwidth capacity transceiver system that combines an E-band (71-76 GHz, 81-86 GHz) millimeter wave RF transceiver with an eye-safe adaptive optics Free Space Optical (FSO) transceiver as a combined apparatus for simultaneous point-to-point commercial communications. The apparatus has a high degree of assured carrier availability under stressing environmental conditions. The apparatus establishes and maintains pointing and stabilization of mmW RF and FSO optical beams between adjacent line of sight apparatuses. The apparatus can rapidly acquire and reacquire the FSO optical carrier link in the event the optical carrier link is impaired due to adverse weather.
    Type: Application
    Filed: December 12, 2014
    Publication date: April 9, 2015
    Inventors: Chandrasekhar Pusarla, Srinivas Sivaprakasam, Joseph Shiran, Malcolm J. Northcott, J. Elon Graves, Howard Dando, Santanu Basu, Siegfried Fleischer
  • Patent number: 8942562
    Abstract: A stabilized ultra-high bandwidth capacity transceiver system that combines an E-band (71-76 GHz, 81-86 GHz) millimeter wave RF transceiver with an eye-safe adaptive optics Free Space Optical (FSO) transceiver as a combined apparatus for simultaneous point-to-point commercial communications. The apparatus has a high degree of assured carrier availability under stressing environmental conditions. The apparatus establishes and maintains pointing and stabilization of mmW RF and FSO optical beams between adjacent line of sight apparatuses. The apparatus can rapidly acquire and reacquire the FSO optical carrier link in the event the optical carrier link is impaired due to adverse weather.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: January 27, 2015
    Assignee: A Optix Technologies, Inc.
    Inventors: Chandrasekhar Pusarla, Srinivas Sivaprakasam, Joseph Shiran, Malcolm Northcott, J. Elon Graves, Howard Dando, Santanu Basu, Siegfried Fleischer
  • Publication number: 20140248048
    Abstract: A low cost, high reliability system for correcting aberrations in optical signals is disclosed. A foreoptic assembly, such as a telescope, receives an incoming optical signal and directs it to an active optical element, such as a fast steering mirror. The incoming optical signal is diffracted by a diffractive optical element to shape the image that is formed at a wavefront sensor, such as a quad-cell. The wavefront sensor measures a tip-tilt aberration of the incoming optical signal and the active optical element is adjusted to correct the measured aberration. An outgoing optical signal can be transmitted along substantially the same optical path as the incoming optical signal, but in the opposite direction. Thus, the aberration measured from the incoming optical signal can be automatically accounted for in the outgoing optical signal.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 4, 2014
    Inventors: Malcolm J. Northcott, J. Elon Graves, Siegfried Fleischer, Paolo Zambon, Jeffrey Tuttle, Rebecca Chang
  • Publication number: 20130088583
    Abstract: A portable, hand held iris imaging system captures iris images that may be used in biometric identification. The system includes an illumination source for illuminating a subject's eye and a camera to capture light reflected from the subject's eye. An optical element positioned between the illumination source and the camera focuses light reflected from the subject's eye onto the camera. A controller receives the captured image and provides it to a display. If the system is not correctly positioned for iris image capture, the display may also provide visual feedback regarding how the system can be properly repositioned. The system includes a housing with a portable form factor so that it may be easily operated.
    Type: Application
    Filed: October 7, 2011
    Publication date: April 11, 2013
    Applicant: AOPTIX TECHNOLOGIES, INC.
    Inventors: Malcolm J. Northcott, J. Elon Graves, Howard Dando
  • Publication number: 20130089240
    Abstract: A portable, hand held iris imaging system captures iris images that may be used in biometric identification. The system is constructed using two separate but coupled subsystems. A first subsystem augments the underlying functionality of the second subsystem. The first subsystem uses an iris camera to capture iris images. A tunable optical element positioned between the subject and the iris camera focuses light reflected from the subject's eye onto the iris camera. A controller coordinates the capture of the iris image with the second subsystem. The second subsystem captures face images of the subject, which are provided to a display through a computer. The user interface is overlaid over the face images to provide visual feedback regarding how the system can be properly repositioned to capture iris images. The system has a portable form factor so that it may be easily operated.
    Type: Application
    Filed: April 23, 2012
    Publication date: April 11, 2013
    Applicant: AOPTIX TECHNOLOGIES, INC.
    Inventors: Malcolm J. Northcott, J. Elon Graves, Howard Dando
  • Publication number: 20120308235
    Abstract: A stabilized ultra-high bandwidth capacity transceiver system that combines an E-band (71-76 GHz, 81-86 GHz) millimeter wave RF transceiver with an eye-safe adaptive optics Free Space Optical (FSO) transceiver as a combined apparatus for simultaneous point-to-point commercial communications. The apparatus has a high degree of assured carrier availability under stressing environmental conditions. The apparatus establishes and maintains pointing and stabilization of mmW RF and FSO optical beams between adjacent line of sight apparatuses. The apparatus can rapidly acquire and reacquire the FSO optical carrier link in the event the optical carrier link is impaired due to adverse weather.
    Type: Application
    Filed: May 31, 2011
    Publication date: December 6, 2012
    Applicant: AOPTIX TECHNOLOGIES, INC.
    Inventors: Chandrasekhar Pusarla, Srinivas Sivaprakasam, Joseph Shiran, Malcolm Northcott, J. Elon Graves, Howard Dando, Santanu Basu, Siegfried Fleischer
  • Patent number: 8260146
    Abstract: An optical circulator couples optical fibers of dissimilar modes. In one embodiment, an optical circulator couples a single mode first fiber to a multimode second fiber, which is used as an optical input to a telescope. The multimode fiber does not significantly degrade the mode structure of the light form the single mode fiber. In the reverse direction, light received by the telescope is coupled into the multimode second fiber, which the circulator couples to a multimode third fiber.
    Type: Grant
    Filed: January 7, 2010
    Date of Patent: September 4, 2012
    Assignee: AOptix Technologies, Inc.
    Inventor: J. Elon Graves
  • Patent number: 8243133
    Abstract: An optical system includes an active focus element that maintains an image in focus over a range of object distances. The active focus element and aperture stop are positioned such that the image scale and the image spatial resolution are also invariant (or at least have a reduced sensitivity) with respect to object distance.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: August 14, 2012
    Assignee: AOptix Technologies, Inc.
    Inventors: Malcolm J. Northcott, J. Elon Graves, Dan Potter
  • Patent number: 8132912
    Abstract: A rapid iris acquisition, tracking, and imaging system can be used at longer standoff distances and over larger capture volumes, without the active cooperation of subjects. Eye reflections from the subjects' eyes are used to steer a high resolution camera to the eyes in order to capture images of the irises. A circular deformable minor driven by one or more annular forces can be used to focus the camera. A circular mirror substrate is mounted by its circumference onto a minor mount and driven by an annular drive element that contacts the minor substrate along a ring. If the annular drive element has a certain diameter relative to the circumference of the mirror substrate, the mirror substrate will be deformed in the shape of a sphere.
    Type: Grant
    Filed: June 29, 2009
    Date of Patent: March 13, 2012
    Assignee: AOptix Technologies, Inc.
    Inventors: Malcolm J. Northcott, J. Elon Graves, Dan Potter, Siegfried Fleischer