Patents by Inventor Jüergen Leib

Jüergen Leib has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10898136
    Abstract: A monitoring device for monitoring the well-being of animals, the monitoring device including a carrier arrangement which can be attached to an animal and which has at least one sensor for sensing a vital function of an animal wearing the carrier arrangement. In the event of a deviation of an actual state from a target state of the animal that leaves a tolerance range, an output signal signaling the deviation is outputted by an output unit.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: January 26, 2021
    Inventors: Juergen Leib, Michael Gruener
  • Publication number: 20170095206
    Abstract: A monitoring device for monitoring the well-being of animals, the monitoring device including a carrier arrangement which can be attached to an animal and which has at least one sensor for sensing a vital function of an animal wearing the carrier arrangement. In the event of a deviation of an actual state from a target state of the animal that leaves a tolerance range, an output signal signaling the deviation is outputted by an output unit.
    Type: Application
    Filed: December 16, 2016
    Publication date: April 6, 2017
    Inventors: Juergen Leib, Michael Gruener
  • Patent number: 8420445
    Abstract: A method for packing semiconductor components is provided, in which a first side of a first wafer is connected to at least one further wafer, wherein at least one of the wafers has a plurality a semiconductor circuits and wherein trenches are made in the second side of the first wafer opposite to the first side and divide the first wafer into a plurality of parts, which are separated from one another by the trenches, but are connected mechanically to one another by means of the at least one further wafer, and wherein the connecting region between the first wafer and the at least one further wafer has been or will be laterally exposed in the trenches. A coating that covers the connecting region is then applied to the regions of the trenches in which the connecting region is exposed.
    Type: Grant
    Filed: June 4, 2008
    Date of Patent: April 16, 2013
    Assignee: Wafer-Level Packaging Portfolio LLC
    Inventor: Juergen Leib
  • Patent number: 8399293
    Abstract: The present invention relates to the field of electronic devices and their associated driver and/or controller integrated circuits and in particular to the mechanical packaging of electronic devices and to the packaging of electronic devices and their associated driver and/or controller integrated circuits.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: March 19, 2013
    Assignee: Wafer-Level Packaging Portfolio LLC
    Inventors: Juergen Leib, Hidefumi Yamamoto
  • Patent number: 8324024
    Abstract: The invention relates to a method for production of packaged electronic, in particular optoelectronic, components in a composite wafer, in which the packaging is carried out by fitting microframe structures of a cover substrate composed of glass, and the composite wafer is broken up along trenches which are produced in the cover substrate, and to packaged electronic components which can be produced using this method, comprising a composite of a mount substrate and a cover substrate, with at least one functional element and at least one bonding element, which makes contact with the functional element, being arranged on the mount substrate, with the cover substrate being a microstructured glass which is arranged on the mount substrate, and forms a cavity above the functional element, and with the bonding elements being located outside the cavity.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: December 4, 2012
    Assignee: Schott AG
    Inventors: Juergen Leib, Dietrich Mund
  • Patent number: 8309384
    Abstract: A wafer level packaging process for packaging components is provided. The process includes permanently connecting a functional side of a base substrate to a covering substrate at wafer level so that a plurality of functional regions on the functional side are in each case packaged to form a wafer level package, the plurality of functional regions being spaced apart from one another on the functional side; producing contact-connection recesses in the base substrate to uncover contact surfaces on the base substrate from a back surface of the base substrate; dividing the base substrate into body regions and connection regions; thinning the body regions or the connection regions until the wafer level package has different thicknesses in the body regions and the connection regions; and dicing wafer level package into chips along predefined cutting lines between the plurality of functional regions.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 13, 2012
    Assignee: Wafer-Level Packaging Portfolio LLC
    Inventor: Juergen Leib
  • Publication number: 20120003791
    Abstract: The present invention relates to the field of electronic devices and their associated driver and/or controller integrated circuits and in particular to the mechanical packaging of electronic devices and to the packaging of electronic devices and their associated driver and/or controller integrated circuits.
    Type: Application
    Filed: September 13, 2011
    Publication date: January 5, 2012
    Applicant: WAFER-LEVEL PACKAGING PORTFOLIO LLC
    Inventors: Juergen Leib, Hidefumi Yamamoto
  • Patent number: 8017435
    Abstract: The present invention relates to the field of electronic devices and their associated driver and/or controller integrated circuits and in particular to the mechanical packaging of electronic devices and to the packaging of electronic devices and their associated driver and/or controller integrated circuits.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: September 13, 2011
    Assignee: Wafer-Level Packaging Portfolio LLC
    Inventors: Juergen Leib, Hidefumi Yamamoto
  • Publication number: 20100283127
    Abstract: A method for packing semiconductor components is provided, in which a first side of a first wafer is connected to at least one further wafer, wherein at least one of the wafers has a plurality a semiconductor circuits and wherein trenches are made in the second side of the first wafer opposite to the first side and divide the first wafer into a plurality of parts, which are separated from one another by the trenches, but are connected mechanically to one another by means of the at least one further wafer, and wherein the connecting region between the first wafer and the at least one further wafer has been or will be laterally exposed in the trenches. A coating that covers the connecting region is then applied to the regions of the trenches in which the connecting region is exposed.
    Type: Application
    Filed: June 4, 2008
    Publication date: November 11, 2010
    Inventor: Juergen Leib
  • Publication number: 20100187669
    Abstract: A wafer level packaging process for packaging components is provided. The process includes permanently connecting a functional side of a base substrate to a covering substrate at wafer level so that a plurality of functional regions on the functional side are in each case packaged to form a wafer level package, the plurality of functional regions being spaced apart from one another on the functional side; producing contact-connection recesses in the base substrate to uncover contact surfaces on the base substrate from a back surface of the base substrate; dividing the base substrate into body regions and connection regions; thinning the body regions or the connection regions until the wafer level package has different thicknesses in the body regions and the connection regions; and dicing wafer level package into chips along predefined cutting lines between the plurality of functional regions.
    Type: Application
    Filed: April 2, 2010
    Publication date: July 29, 2010
    Inventor: Juergen Leib
  • Patent number: 7700397
    Abstract: A wafer level packaging process for packaging components is provided. The process includes permanently connecting a functional side of a base substrate to a covering substrate at wafer level so that a plurality of functional regions on the functional side are in each case packaged to form a wafer level package, the plurality of functional regions being spaced apart from one another on the functional side; producing contact-connection recesses in the base substrate to uncover contact surfaces on the base substrate from a back surface of the base substrate; dividing the base substrate into body regions and connection regions; thinning the body regions or the connection regions until the wafer level package has different thicknesses in the body regions and the connection regions; and dicing wafer level package into chips along predefined cutting lines between the plurality of functional regions.
    Type: Grant
    Filed: November 15, 2004
    Date of Patent: April 20, 2010
    Assignee: Schott AG
    Inventor: Juergen Leib
  • Publication number: 20100059877
    Abstract: The present invention relates to the field of electronic devices and their associated driver and/or controller integrated circuits and in particular to the mechanical packaging of electronic devices and to the packaging of electronic devices and their associated driver and/or controller integrated circuits.
    Type: Application
    Filed: June 1, 2007
    Publication date: March 11, 2010
    Applicant: SCHOTT AG
    Inventors: Juergen Leib, Hidefumi Yamamoto
  • Publication number: 20090321867
    Abstract: The invention relates to a method for production of packaged electronic, in particular optoelectronic, components in a composite wafer, in which the packaging is carried out by fitting microframe structures of a cover substrate composed of glass, and the composite wafer is broken up along trenches which are produced in the cover substrate, and to packaged electronic components which can be produced using this method, comprising a composite of a mount substrate and a cover substrate, with at least one functional element and at least one bonding element, which makes contact with the functional element, being arranged on the mount substrate, with the cover substrate being a microstructured glass which is arranged on the mount substrate, and forms a cavity above the functional element, and with the bonding elements being located outside the cavity.
    Type: Application
    Filed: April 10, 2006
    Publication date: December 31, 2009
    Applicant: SCHOTT AG
    Inventors: Juergen Leib, Dietrich Mund
  • Patent number: 7566672
    Abstract: The glass is advantageous for microstructuring, especially reactive ion etching with fluorine and fluorine compounds, and has a glass composition based on oxide content and expressed in mol % of: SiO2, 40-70; GeO2, 0-30; B2O3, 5-20; P2O5, 5-20; WO3, 0-10; As2O3, 0-10; Yb2O3, 0-5; and Lu2O3, 0-5. Microstructure components, such as micro arrays, Fresnel lenses, micro wafers, or micro lens wafers, made by a method including reactive ion etching from the glass are also part of the present invention.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: July 28, 2009
    Assignee: Schott AG
    Inventors: Wolfgang Pannhorst, Ulf Dahlmann, Ulrich Fotheringham, Juergen Leib, Rainer Liebald
  • Patent number: 7476623
    Abstract: In the method for microstructuring flat glass substrates a substrate surface of a glass substrate is coated with at least one structured mask layer and subsequently exposed to a chemically reactive ion etching process (RIE) with at least one chemical etching gas. In order to provide the same or a higher quality etching and etching rate even for economical types of glass the chemical etching gas is mixed with at least one noble gas, so that the proportion of sputtering etching in the ion etching process is significantly increased.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: January 13, 2009
    Assignee: Schott AG
    Inventors: Bianca Schreder, Rainer Liebald, Edgar Pawlowski, Dirk Sprenger, Dietrich Mund, Juergen Leib
  • Publication number: 20080257860
    Abstract: In the method for microstructuring flat glass substrates a substrate surface of a glass substrate is coated with at least one structured mask layer and subsequently exposed to a chemically reactive ion etching process (RIE) with at least one chemical etching gas. In order to provide the same or a higher quality etching and etching rate even for economical types of glass the chemical etching gas is mixed with at least one noble gas, so that the proportion of sputtering etching in the ion etching process is significantly increased.
    Type: Application
    Filed: April 22, 2008
    Publication date: October 23, 2008
    Inventors: Bianca Schreder, Rainer Liebald, Edgar Pawlowski, Dirk Sprenger, Dietrich Mund, Juergen Leib
  • Publication number: 20080038868
    Abstract: A wafer level packaging process for packaging components is provided. The process includes permanently connecting a functional side of a base substrate to a covering substrate at wafer level so that a plurality of functional regions on the functional side are in each case packaged to form a wafer level package, the plurality of functional regions being spaced apart from one another on the functional side; producing contact-connection recesses in the base substrate to uncover contact surfaces on the base substrate from a back surface of the base substrate; dividing the base substrate into body regions and connection regions; thinning the body regions or the connection regions until the wafer level package has different thicknesses in the body regions and the connection regions; and dicing wafer level package into chips along predefined cutting lines between the plurality of functional regions.
    Type: Application
    Filed: November 15, 2004
    Publication date: February 14, 2008
    Inventor: Jüergen Leib
  • Publication number: 20070078048
    Abstract: The glass is advantageous for microstructuring, especially reactive ion etching with fluorine and fluorine compounds, and has a glass composition based on oxide content and expressed in mol % of: SiO2, 40-70; GeO2, 0-30; B2O3, 5-20; P2O5, 5-20; WO3, 0-10; As2O3, 0-10; Yb2O3, 0-5; and Lu2O3, 0-5. Microstructure components, such as micro arrays, Fresnel lenses, micro wafers, or micro lens wafers, made by a method including reactive ion etching from the glass are also part of the present invention.
    Type: Application
    Filed: July 17, 2006
    Publication date: April 5, 2007
    Inventors: Wolfgang Pannhorst, Ulf Dahlmann, Ulrich Fotheringham, Juergen Leib, Rainer Liebald
  • Publication number: 20060079094
    Abstract: In the method for microstructuring flat glass substrates a substrate surface of a glass substrate is coated with at least one structured mask layer and subsequently exposed to a chemically reactive ion etching process (RIE) with at least one chemical etching gas. In order to provide the same or a higher quality etching and etching rate even for economical types of glass the chemical etching gas is mixed with at least one noble gas, so that the proportion of sputtering etching in the ion etching process is significantly increased.
    Type: Application
    Filed: October 4, 2005
    Publication date: April 13, 2006
    Inventors: Bianca Schreder, Rainer Liebald, Edgar Pawlowski, Dirk Sprenger, Dietrich Mund, Juergen Leib
  • Publication number: 20050035092
    Abstract: The hybrid housing includes a base housing and one or more separately made functional components joined in the base housing by electron beam welding to provide a hermetically sealed hybrid housing e.g. for use under water or in aircraft or spacecraft. The separately made functional components can included e.g. a KOVAR-glass feed-through device and/or a copper or molybdenum metal block for heat dissipation. The base housing can be made of aluminum, an aluminum alloy, stainless steel or VA steel.
    Type: Application
    Filed: June 30, 2004
    Publication date: February 17, 2005
    Inventors: Robert Eder, Friedrich Schulte, Juergen Leib