Patents by Inventor J. Frederick Larrick, Jr.

J. Frederick Larrick, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7369598
    Abstract: A waveform-adaptive ultra-wideband (UWB) transmitter and noise-tracking UWB receiver for use in communications, object detection and radar applications. In one embodiment, the output of an oscillator is gated by a low-level impulse generator either directly or through an optional filter. In a special case of that embodiment wherein the oscillator is zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, the low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The low-level impulse signal can be generated digitally. The UWB signal may be modulated to carry data, or may be used in object detection or ranging applications.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: May 6, 2008
    Assignee: Multispectral Solutions, Inc.
    Inventors: Robert J. Fontana, J. Frederick Larrick, Jr.
  • Patent number: 6690741
    Abstract: A data-modulated ultra wideband transmitter that modulates the phase, frequency, bandwidth, amplitude and/or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and/or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and/or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and/or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter.
    Type: Grant
    Filed: November 22, 1999
    Date of Patent: February 10, 2004
    Assignee: Multispectral Solutions, Inc.
    Inventors: J. Frederick Larrick, Jr., Robert J. Fontana
  • Patent number: 6026125
    Abstract: A waveform adaptive transmitter that conditions and/or modulates the phase, frequency, bandwidth, amplitude and/or attenuation of ultra-wideband (UWB) pulses. The transmitter confines or band-limits UWB signals within spectral limits for use in communication, positioning, and/or radar applications. One embodiment comprises a low-level UWB source (e.g., an impulse generator or time-gated oscillator (fixed or voltage-controlled)), a waveform adapter (e.g., digital or analog filter, pulse shaper, and/or voltage variable attenuator), a power amplifier, and an antenna to radiate a band-limited and/or modulated UWB or wideband signals. In a special case where the oscillator has zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter.
    Type: Grant
    Filed: May 16, 1997
    Date of Patent: February 15, 2000
    Assignee: Multispectral Solutions, Inc.
    Inventors: J. Frederick Larrick, Jr., Robert J. Fontana
  • Patent number: 5901172
    Abstract: An UWB receiver utilizing a microwave tunnel diode as a single pulse detector for short pulse, impulse, baseband or ultra wideband signals. The tunnel diode detector's bias point is set at system start-up, through an automatic calibration procedure to its highest sensitivity point relative to the desired bit error rate performance (based upon internal noise only) and remains there during the entire reception process. High noise immunity is achieved through the use of a high speed, adaptive dynamic range extension process using a high speed, Gallium Arsenide (GaAs) voltage variable attenuator (VVA) whose instantaneous attenuation level is determined by a periodic sampling of the ambient noise environment. Microprocessor-controlled detector time-gating is performed to switch the tunnel diode detector to the receiver front end circuitry for reception of an incoming UWB pulse, and alternately to ground through a resistor to discharge stored charge on the tunnel diode detector.
    Type: Grant
    Filed: June 11, 1997
    Date of Patent: May 4, 1999
    Assignee: Multispectral Solutions, Inc.
    Inventors: Robert J. Fontana, J. Frederick Larrick, Jr.
  • Patent number: RE44634
    Abstract: A waveform-adaptive ultra-wideband (UWB) transmitter and noise-tracking UWB receiver for use in communications, object detection and radar applications. In one embodiment, the output of an oscillator is gated by a low-level impulse generator either directly or through an optional filter. In a special case of that embodiment wherein the oscillator is zero frequency and outputs a DC bias, a low-level impulse generator impulse-excites a bandpass filter to produce an UWB signal having an adjustable center frequency and desired bandwidth based on a characteristic of the filter. In another embodiment, the low-level impulse signal is approximated by a time-gated continuous-wave oscillator to produce an extremely wide bandwidth pulse with deterministic center frequency and bandwidth characteristics. The low-level impulse signal can be generated digitally. The UWB signal may be modulated to carry data, or may be used in object detection or ranging applications.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: December 10, 2013
    Assignee: Multispectral Solutions, Inc.
    Inventors: Robert J. Fontana, J. Frederick Larrick, Jr.