Patents by Inventor J. Kevin Whear

J. Kevin Whear has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9935302
    Abstract: A separator for a lead acid battery is a porous membrane having a positive electrode face and a negative electrode face. A plurality of longitudinally extending ribs, a plurality of protrusions or a nonwoven material may be disposed upon the positive electrode face. A plurality of transversely extending ribs are disposed upon the negative electrode face. The transverse ribs disposed upon the negative electrode face are preferably juxtaposed to a negative electrode of the lead acid battery, when the separator is placed within that battery.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: April 3, 2018
    Assignee: Daramic, LLC
    Inventors: Eric H. Miller, J. Kevin Whear
  • Publication number: 20180029276
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: October 3, 2017
    Publication date: February 1, 2018
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Publication number: 20170294636
    Abstract: A battery separator has performance enhancing additives or coatings, fillers with increased friability, increased ionic diffusion, decreased tortuosity, increased wettability, reduced oil content, reduced thickness, decreased electrical resistance, and/or increased porosity. The separator in a battery reduces the water loss, lowers acid stratification, lowers the voltage drop, and/or increases the CCA.
    Type: Application
    Filed: April 7, 2017
    Publication date: October 12, 2017
    Inventors: Mohammed Naiha, Joerg Deiters, Ahila Krishnamoorthy, Eric H. Miller, J. Kevin Whear, Robert W. Saffel, Naoto Miyake, Kanak Kuwelkar
  • Publication number: 20170288277
    Abstract: In accordance with at least selected embodiments or aspects, the present invention is directed to improved, unique, and/or complex performance lead acid battery separators, such as improved flooded lead acid battery separators, batteries including such separators, methods of production, and/or methods of use. The preferred battery separator of the present invention addresses and optimizes multiple separator properties simultaneously. It is believed that the present invention is the first to recognize the need to address multiple separator properties simultaneously, the first to choose particular multiple separator property combinations, and the first to produce commercially viable multiple property battery separators, especially such a separator having negative cross ribs.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 5, 2017
    Inventors: J. Kevin Whear, Eric H. Miller, Margaret R. Roberts
  • Publication number: 20170207434
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler, providing a processing plasticizer, adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: January 26, 2017
    Publication date: July 20, 2017
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. DeMeuse, J. Kevin Whear
  • Publication number: 20170104199
    Abstract: Improved battery separators are disclosed herein for use in flooded lead-acid batteries, and in particular enhanced flooded lead-acid batteries. The improved separators disclosed herein provide for enhanced electrolyte mixing and substantially reduced acid stratification. The improved flooded lead-acid batteries may be advantageously employed in applications in which the battery remains in a partial state of charge, for instance in start/stop vehicle systems. Also, improved lead-acid batteries, such as flooded lead-acid batteries, improved systems that include a lead-acid battery and a battery separator, improved battery separators, improved vehicles including such systems, and/or methods of manufacture and/or use may be provided.
    Type: Application
    Filed: October 7, 2016
    Publication date: April 13, 2017
    Inventors: Eric H. Miller, M. Neal Golovin, Ahila Krishnamoorthy, Matthew Howard, James P. Perry, J. Kevin Whear
  • Publication number: 20170098810
    Abstract: In accordance with at least selected embodiments, the present application or invention is directed to novel or improved porous membranes or substrates, separator membranes, separators, composites, electrochemical devices, batteries, methods of making such membranes or substrates, separators, and/or batteries, and/or methods of using such membranes or substrates, separators and/or batteries. In accordance with at least certain embodiments, the present application is directed to novel or improved porous membranes having a coating layer, battery separator membranes having a coating layer, separators, energy storage devices, batteries, including lead acid batteries including such separators, methods of making such membranes, separators, and/or batteries, and/or methods of using such membranes, separators and/or batteries.
    Type: Application
    Filed: October 5, 2016
    Publication date: April 6, 2017
    Inventors: J. Kevin Whear, Ahila Krishnamoorthy, Susmitha Appikatla
  • Publication number: 20170072610
    Abstract: A method for producing a microporous material comprising the steps of: providing an ultrahigh molecular weight polyethylene (UHMWPE); providing a filler; providing a processing plasticizer; adding the filler to the UHMWPE in a mixture being in the range of from about 1:9 to about 15:1 filler to UHMWPE by weight; adding the processing plasticizer to the mixture; extruding the mixture to form a sheet from the mixture; calendering the sheet; extracting the processing plasticizer from the sheet to produce a matrix comprising UHMWPE and the filler distributed throughout the matrix; stretching the microporous material in at least one direction to a stretch ratio of at least about 1.5 to produce a stretched microporous matrix; and subsequently calendering the stretched microporous matrix to produce a microporous material which exhibits improved physical and dimensional stability properties over the stretched microporous matrix.
    Type: Application
    Filed: November 7, 2016
    Publication date: March 16, 2017
    Inventors: Eric H. Miller, Joseph G. Yaritz, Mark T. Demeuse, J. Kevin Whear
  • Publication number: 20170077479
    Abstract: A battery separator for a lead acid battery addresses the issues of acid stratification and separator oxidation arising from contaminants. The separator includes a microporous membrane and a diffusive mat affixed thereto. The diffusive mat has a three hour wick of: at least about 2.5 cm. The diffusive mat may be made of synthetic fibers, glass fibers, natural fibers, and combinations thereof. The diffusive mat may include silica. The separator may include a rubber.
    Type: Application
    Filed: November 29, 2016
    Publication date: March 16, 2017
    Inventors: Eric H. Miller, J. Kevin Whear, John R. Timmons, Jeffrey K. Chambers, Pierre A. Hauswald
  • Publication number: 20170047615
    Abstract: An exemplary hybrid battery separator is provided with a porous sheet with a folded bottom edge and joined lateral edges that form a pocket. The folded bottom edge may have one or more openings or slits. The hybrid separators of the present disclosure are particularly useful for flat-plate cycling batteries. The separators of the present disclosure may effectively enhance the battery re-chargeability and the backup time. In addition, the separators of the present disclosure may contribute to the reduction of water loss in the battery, lowering the maintenance needs in service. It is expected that batteries having the separators of the present disclosure may be useful in various applications, such as in inverters, golf carts, as well as solar and traction applications.
    Type: Application
    Filed: August 12, 2016
    Publication date: February 16, 2017
    Inventors: Surendra Kumar Mittal, Naveen Prabhu Shanmugam, J. Kevin Whear, Eric H. Miller
  • Publication number: 20160344036
    Abstract: Disclosed herein are novel or improved porous polyolefinic plate wrap materials for batteries, improved wrapped plates, improved systems, improved batteries or cells, non-PVC plate wraps, non-PVC wrapped plates, non-PVC batteries, and/or methods of production and/or use thereof. The use of such polyolefinic wraps may simplify the construction of batteries, produce more efficient or robust batteries, and/or the like.
    Type: Application
    Filed: May 20, 2016
    Publication date: November 24, 2016
    Inventors: J. Kevin Whear, Jeffrey K. Chambers, Robert W. Saffel, Eric H. Miller
  • Publication number: 20160254509
    Abstract: New or improved lead acid batteries with vapor pressure barriers and/or improved battery separators, as well as systems, vehicles, and/or methods of manufacture and/or use thereof are disclosed herein. In at least select embodiments, the instant disclosure provides new or improved lead acid batteries with a vapor pressure barrier. In at least select embodiments, the instant disclosure provides new or improved lead acid battery vapor pressure barriers along with new or improved battery separators, and/or methods of manufacture and/or use thereof. In at least select embodiments, the instant disclosure provides a new or improved lead acid battery with a vapor pressure barrier that reduces the water loss from the battery. In at least select embodiments, a method of reducing the water loss of a lead acid battery may include providing a vapor pressure barrier, such as a layer of oil, inside the lead acid battery along with an improved battery separator.
    Type: Application
    Filed: February 26, 2016
    Publication date: September 1, 2016
    Inventors: Margaret R. Roberts, Jeffrey K. Chambers, James Perry, J. Kevin Whear
  • Patent number: 9190648
    Abstract: A lead-acid battery separator comprised of a porous membrane substrate having a front surface and a back surface and said front surface having a plurality of ribs. To enhance the substrate's stiffness, one or more coatings of a stiffening material may be adhered to the ribs on the substrate's surface.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: November 17, 2015
    Assignee: Daramic LLC
    Inventors: J. Kevin Whear, Jeffrey K. Chambers, Mohammed Naiha, Tejas R. Shah
  • Publication number: 20150318529
    Abstract: New or improved battery separators for lead-acid batteries that include a carbon or mineral additive applied to the separator. In possibly preferred embodiments, the battery separator may include engineered carbon materials applied to the battery separator to modify sulfate crystal formation while decreasing the detrimental consequences of excessive gas evolution into the negative electrode itself. In one embodiment, a method of enhancing the lead-acid energy storage performance of a lead-acid battery may include delivering carbon to the negative active material surface of the battery separator where the carbon may effectively enhance charge acceptance and improve life cycle performance of a lead-acid battery.
    Type: Application
    Filed: May 5, 2015
    Publication date: November 5, 2015
    Inventors: J. Kevin Whear, James P. Perry, Jeffrey K. Chambers, Larry A. Spickard, John R. Timmons
  • Publication number: 20150188111
    Abstract: A multilayer deep cycle battery separator comprising at least two layers of an automotive-sized separator bonded or welded together. The automotive-sized separator layers include a backweb having a backweb thickness between 6 to 10 mils, an overall thickness of between 25 to 65 mils, and a rib base width of between 20 to 35 mils. The automotive-sized separator layers also have an extraction time of between 45 to 75 seconds, thereby providing an overall extraction time of less than a standard deep cycle battery separator.
    Type: Application
    Filed: December 29, 2014
    Publication date: July 2, 2015
    Inventors: J. Kevin Whear, Eric H. Miller
  • Publication number: 20140255789
    Abstract: A battery separator for a lead/acid battery is resistant to oxidation arising from the use of water or acid containing contaminants, for example chromium (Cr), manganese (Mn), titanium (Ti), copper (Cu), and the like. The separator is a microporous membrane including a rubber. The rubber is no more than about 12% by weight of the separator. The rubber may be rubber latex, tire crumb, and combinations thereof. The rubber may be impregnated into the microporous membrane. The microporous membrane may be a microporous sheet of polyolefin, polyvinyl chloride, phenol-formaldehyde resins, cross-linked rubber, or nonwoven fibers. A method for preventing the oxidation and/or extending battery life of the separator is also included.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: Daramic, LLC
    Inventors: Eric H. Miller, J. Kevin Whear, Jeffrey K. Chambers
  • Publication number: 20140255752
    Abstract: A battery separator for a lead acid battery addresses the issues of acid stratification and separator oxidation arising from contaminants. The separator includes a microporous membrane and a diffusive mat affixed thereto. The diffusive mat has a three hour wick of: at least about 2.5 cm. The diffusive mat may be made of synthetic fibers, glass fibers, natural fibers, and combinations thereof. The diffusive mat may include silica. The separator may include a rubber.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 11, 2014
    Applicant: Daramic, LLC
    Inventors: Eric H. Miller, J. Kevin Whear, John R. Timmons, Jeffrey K. Chambers, Pierre A. Hauswald
  • Patent number: 8404378
    Abstract: A battery separator for a lead acid (storage) battery is made from a thermoplastic sheet material. The sheet material has a central region flanked by peripheral regions. The central region includes a plurality of longitudinally extending ribs that are integrally formed from the sheet material. The peripheral regions are free of ribs and may include a densified structure. Also disclosed are a method of producing the foregoing separator, an envelope separator made from the sheet material, and a method of making the envelope separator.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: March 26, 2013
    Assignee: Daramic LLC
    Inventors: J. Kevin Whear, Eric H. Miller, Salvatore Cardillo, Daniel Dreyer
  • Publication number: 20120070747
    Abstract: In accordance with at least selected embodiments or aspects, the present invention is directed to improved, unique, and/or complex performance lead acid battery separators, such as improved flooded lead acid battery separators, batteries including such separators, methods of production, and/or methods of use. The preferred battery separator of the present invention addresses and optimizes multiple separator properties simultaneously. It is believed that the present invention is the first to recognize the need to address multiple separator properties simultaneously, the first to choose particular multiple separator property combinations, and the first to produce commercially viable multiple property battery separators, especially such a separator having negative cross ribs.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 22, 2012
    Inventors: J. Kevin Whear, Eric H. Miller, Margaret R. Roberts
  • Publication number: 20120070713
    Abstract: In accordance with at least selected embodiments or aspects, the present invention is directed to improved, unique, and/or high performance ISS lead acid battery separators, such as improved ISS flooded lead acid battery separators, ISS batteries including such separators, methods of production, and/or methods of use. The preferred ISS separator may include negative cross ribs and/or PIMS minerals. In accordance with more particular embodiments or examples, a PIMS mineral (preferably fish meal, a bio-mineral) is provided as at least a partial substitution for the silica filler component in a silica filled lead acid battery separator (preferably a polyethylene/silica separator formulation). In accordance with at least selected embodiments, the present invention is directed to new or improved batteries, separators, components, and/or compositions having heavy metal removal capabilities and/or methods of manufacture and/or methods of use thereof.
    Type: Application
    Filed: September 22, 2011
    Publication date: March 22, 2012
    Inventors: J. Kevin Whear, John R. Timmons, Jeffrey K. Chambers, Tejas R. Shah