Patents by Inventor J. Manuel Perez

J. Manuel Perez has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210128731
    Abstract: The invention provides a nanovehicle, comprising: a core, wherein the core comprises at least one iron oxide: a shell surrounding the core, wherein the shell comprises at least one polymer; and at least one boron cluster. The invention provides a method of treating a disease, disorder, or disease condition in a subject, comprising administering a therapeutically effective amount of the nanovehicle to the subject; and radiating the nanovehicle with neutrons. In various embodiments, the invention provides a method for detecting a cancer in a subject, comprising administering an effective amount of at least one nanoparticle of the present invention to the subject. The invention also provides the nanovehicles (e.g., nanoparticles) described herein in the form of various pharmaceutical formulations. The invention provides a kit, the kit comprises: a quantity of the nanovehicle (e.g., nanoparticle) described herein.
    Type: Application
    Filed: April 18, 2019
    Publication date: May 6, 2021
    Applicants: CEDARS-SINAI MEDICAL CENTER, THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: J. Manuel Perez, Alexander M. Spokoyny, James Teh, Nicholas Bernier, Keith L. BLACK, Leland Chung, Yi Zhang
  • Publication number: 20210113715
    Abstract: The present invention provides a nanoparticle, comprising: a core, wherein the core comprises at least one iron oxide; a shell surrounding the core, wherein the shell comprises at least one polymer; and at least one targeting moiety attached to the shell, wherein the nanoparticle does not comprise boron, for use in methods for detecting and treating cancer in a subject.
    Type: Application
    Filed: April 18, 2019
    Publication date: April 22, 2021
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: J. Manuel Perez, Leland Chung, Yi Zhang, Keith L. Black
  • Publication number: 20190113508
    Abstract: The present invention provides novel compositions of binding moiety-nanoparticle conjugates, aggregates of these conjugates, and novel methods of using these conjugates, and aggregates. The nanoparticles in these conjugates can be magnetic metal oxides, either monodisperse or polydisperse. Binding moieties can be, e.g., oligonucleotides, polypeptides, or polysaccharides. Oligonucleotide sequences are linked to either non-polymer surface functionalized metal oxides or with functionalized polymers associated with the metal oxides. The novel compositions can be used in assays for detecting target molecules, such as nucleic acids and proteins, in vitro or as magnetic resonance (MR) contrast agents to detect target molecules in living organisms.
    Type: Application
    Filed: May 8, 2018
    Publication date: April 18, 2019
    Inventors: Lee Josephson, Ralph Weissleder, J. Manuel Perez
  • Patent number: 9555008
    Abstract: A method of making a hyperbranched amphiphilic polyester compound includes drying under vacuum a mixture of 2-(4-hydroxybutyl)-malonic acid and p-toluene sulphonic acid as catalyst. The vacuum is then released with a dry inert gas after drying. The dried mixture is heated under the inert gas at a temperature sufficient for polymerization. The inert gas is evacuated while continuing to heat the mixture. The formed polymer is then dissolved in dimethylformamide and precipitated out by adding methanol. Modifications of the method yield nanoparticles of polyesters having properties suited for coencapsulating fluorescent dyes together with therapeutic drugs, resulting in theranostic nanoparticles, that is, nanoparticles useful in both therapeutic treatments and diagnostic methods.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: January 31, 2017
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: J. Manuel Perez, Santimukul Santra
  • Publication number: 20160320379
    Abstract: The present invention provides novel compositions of binding moiety-nanoparticle conjugates, aggregates of these conjugates, and novel methods of using these conjugates, and aggregates. The nanoparticles in these conjugates can be magnetic metal oxides, either monodisperse or polydisperse. Binding moieties can be, e.g., oligonucleotides, polypeptides, or polysaccharides. Oligonucleotide sequences are linked to either non-polymer surface functionalized metal oxides or with functionalized polymers associated with the metal oxides. The novel compositions can be used in assays for detecting target molecules, such as nucleic acids and proteins, in vitro or as magnetic resonance (MR) contrast agents to detect target molecules in living organisms.
    Type: Application
    Filed: December 1, 2015
    Publication date: November 3, 2016
    Inventors: Lee Josephson, Ralph Weissleder, J. Manuel Perez
  • Patent number: 9442110
    Abstract: A system and method are provided to detect target analytes based on magnetic resonance measurements. Magnetic structures produce distinct magnetic field regions having a size comparable to the analyte. When the analyte is bound in those regions, magnetic resonance signals from the sample are changed, leading to detection of the analyte.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: September 13, 2016
    Assignee: MENON BIOSENSORS, INC.
    Inventors: Suresh M. Menon, David E. Newman, Terry J. Henderson, J. Manuel Perez
  • Publication number: 20160256402
    Abstract: A method of making a hyperbranched amphiphilic polyester compound includes drying under vacuum a mixture of 2-(4-hydroxybutyl)-malonic acid and p-toluene sulphonic acid as catalyst. The vacuum is then released with a dry inert gas after drying. The dried mixture is heated under the inert gas at a temperature sufficient for polymerization. The inert gas is evacuated while continuing to heat the mixture. The formed polymer is then dissolved in dimethylformamide and precipitated out by adding methanol. Modifications of the method yield nanoparticles of polyesters having properties suited for coencapsulating fluorescent dyes together with therapeutic drugs, resulting in theranostic nanoparticles, that is, nanoparticles useful in both therapeutic treatments and diagnostic methods.
    Type: Application
    Filed: February 22, 2016
    Publication date: September 8, 2016
    Inventors: J. Manuel Perez, Santimukul Santra
  • Patent number: 9267002
    Abstract: A method of making a hyperbranched amphiphilic polyester compound includes drying under vacuum a mixture of 2-(4-hydroxybutyl)-malonic acid and p-toluene sulphonic acid as catalyst. The vacuum is then released with a dry inert gas after drying. The dried mixture is heated under the inert gas at a temperature sufficient for polymerization. The inert gas is evacuated while continuing to heat the mixture. The formed polymer is then dissolved in dimethylformamide and precipitated out by adding methanol. Modifications of the method yield nanoparticles of polyesters having properties suited for coencapsulating fluorescent dyes together with therapeutic drugs, resulting in theranostic nanoparticles, that is, nanoparticles useful in both therapeutic treatments and diagnostic methods.
    Type: Grant
    Filed: June 19, 2015
    Date of Patent: February 23, 2016
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: J. Manuel Perez, Santimukul Santra
  • Publication number: 20150284507
    Abstract: A method of making a hyperbranched amphiphilic polyester compound includes drying under vacuum a mixture of 2-(4-hydroxybutyl)-malonic acid and p-toluene sulphonic acid as catalyst. The vacuum is then released with a dry inert gas after drying. The dried mixture is heated under the inert gas at a temperature sufficient for polymerization. The inert gas is evacuated while continuing to heat the mixture. The formed polymer is then dissolved in dimethylformamide and precipitated out by adding methanol. Modifications of the method yield nanoparticles of polyesters having properties suited for coencapsulating fluorescent dyes together with therapeutic drugs, resulting in theranostic nanoparticles, that is, nanoparticles useful in both therapeutic treatments and diagnostic methods.
    Type: Application
    Filed: June 19, 2015
    Publication date: October 8, 2015
    Inventors: J. Manuel Perez, Santimukul Santra
  • Patent number: 9109249
    Abstract: Disclosed herein are methods and materials for facilitating the detection of nucleic acid analytes of interest. Specifically exemplified herein are methods for detecting mycobacterial microorganisms, namely Mycobacterium avium spp. paratuberculosis. Also disclosed is new hybridizing magnetic relaxation nanosensor (hMRS) particularly adapted to detect a target nucleic acid analyte of interest.
    Type: Grant
    Filed: May 21, 2012
    Date of Patent: August 18, 2015
    Assignee: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Saleh Naser, J. Manuel Perez, Charalambos Kaittanis
  • Patent number: 9095611
    Abstract: A method of making a hyperbranched amphiphilic polyester compound includes drying under vacuum a mixture of 2-(4-hydroxybutyl)-malonic acid and p-toluene sulphonic acid as catalyst. The vacuum is then released with a dry inert gas after drying. The dried mixture is heated under the inert gas at a temperature sufficient for polymerization. The inert gas is evacuated while continuing to heat the mixture. The formed polymer is then dissolved in dimethylformamide and precipitated out by adding methanol. Modifications of the method yield nanoparticles of polyesters having properties suited for coencapsulating fluorescent dyes together with therapeutic drugs, resulting in theranostic nanoparticles, that is, nanoparticles useful in both therapeutic treatments and diagnostic methods.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: August 4, 2015
    Assignee: The University of Central Florida Research Foundation, Inc.
    Inventors: J Manuel Perez, Santimukal Santra
  • Patent number: 9057094
    Abstract: A method of testing bacterial cells for antimicrobial susceptibility includes preparing a suspension of the bacterial cells in a non-nutrient medium, mixing with the suspension an antimicrobial, a carbohydrate usable by the bacterial cells, metallic nanoparticles, and a lectin, and incubating the mixture while monitoring a parameter of the nanoparticles responsive to use of the carbohydrate by the bacterial cells. More broadly stated, the invention includes a method of testing an agent for its effect on cell metabolism by preparing a suspension of cells in a non-nutrient medium, mixing the suspension with the agent, adding a carbohydrate usable by the cells, metallic nanoparticles, and a lectin with binding specificity for the added carbohydrate, and monitoring a nanoparticle parameter responsive to the cells.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: June 16, 2015
    Assignees: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC., NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS
    Inventors: J. Manuel Perez, Charalambos Kaittanis, Sudip Nath
  • Publication number: 20150087605
    Abstract: Disclosed are compositions and methods for treating anthrax, inhibiting anthrax toxins and inhibiting anthrax toxin-induced cytotoxicity. Carboxylic acid-containing small molecules can be used in the methods and compositions disclosed herein, for example, sulindac and derivatives thereof may be used. Methods of screening for carboxylic acid-containing small molecules that can be used to treat anthrax are disclosed. Targeting the anthrax toxin reduces the risks of anthrax spores.
    Type: Application
    Filed: September 19, 2014
    Publication date: March 26, 2015
    Inventors: J. Manuel Perez Figueroa, Oscar Santiesteban, Charalambos Kaittanis
  • Patent number: 8883519
    Abstract: Methods, systems, compositions include biocompatible polymer coated nanoceria that function as aqueous redox catalyst with enhanced activity at an acidic to moderately alkaline pH value between 1 and 8. The compositions are used as oxidizing agents for decomposition, decontamination or inactivation of organic contaminants, such as, pesticides and chemical warfare agents. Another use includes nanoceria as targetable nanocatalyst prepared by conjugating various targeting ligands to the nanoparticle coating to form a colorimetric or fluorescent probe in immunoassays and other molecule binding assays that involve the use of a molecule in solution that changes the color of the solution or emits a fluorescent signal, where localization of nanoceria to organs or tissue is assessed by treatment with an oxidation sensitive dye or other detection devices.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: November 11, 2014
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: J. Manuel Perez, Atul Asati, Santimukul Santra, Charalambos Kaittanis, Sudip Nath
  • Publication number: 20140303022
    Abstract: The present invention provides novel compositions of binding moiety-nanoparticle conjugates, aggregates of these conjugates, and novel methods of using these conjugates, and aggregates. The nanoparticles in these conjugates can be magnetic metal oxides, either monodisperse or polydisperse. Binding moieties can be, e.g., oligonucleotides, polypeptides, or polysaccharides. Oligonucleotide sequences are linked to either non-polymer surface functionalized metal oxides or with functionalized polymers associated with the metal oxides. The novel compositions can be used in assays for detecting target molecules, such as nucleic acids and proteins, in vitro or as magnetic resonance (MR) contrast agents to detect target molecules in living organisms.
    Type: Application
    Filed: April 18, 2014
    Publication date: October 9, 2014
    Applicant: The General Hospital Corporation
    Inventors: Lee Josephson, Ralph Weissleder, J. Manuel Perez
  • Publication number: 20140220565
    Abstract: Disclosed herein are methods and materials for facilitating the detection of nucleic acid analytes of interest. Specifically exemplified herein are methods for detecting mycobacterial microorganisms, namely Mycobacterium avium spp. paratuberculosis. Also disclosed is new hybridizing magnetic relaxation nanosensor (hMRS) particularly adapted to detect a target nucleic acid analyte of interest.
    Type: Application
    Filed: May 21, 2012
    Publication date: August 7, 2014
    Applicant: UNIVERSITY OF CENTRAL FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Saleh Naser, J. Manuel Perez, Charalambos Kaittanis
  • Publication number: 20140044648
    Abstract: An activatable probe and methods of using the same are provided. The activatable probe includes a superparamagnetic core and a polymeric matrix coating the metal oxide core. A paramagnetic agent encapsulated within the polymeric matrix. The polymeric matrix is configured to release the paramagnetic agent when subjected to a medium having a pH less than a normal physiological pH.
    Type: Application
    Filed: July 8, 2013
    Publication date: February 13, 2014
    Applicant: University of Central Florida Research Foundation, Inc.
    Inventors: J. Manuel Perez, Santimukul Santra
  • Patent number: 8569078
    Abstract: The present invention provides novel compositions of binding moiety-nanoparticle conjugates, aggregates of these conjugates, and novel methods of using these conjugates, and aggregates. The nanoparticles in these conjugates can be magnetic metal oxides, either monodisperse or polydisperse. Binding moieties can be, e.g., oligonucleotides, polypeptides, or polysaccharides. Oligonucleotide sequences are linked to either non-polymer surface functionalized metal oxides or with functionalized polymers associated with the metal oxides. The novel compositions can be used in assays for detecting target molecules, such as nucleic acids and proteins, in vitro or as magnetic resonance (MR) contrast agents to detect target molecules in living organisms.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: October 29, 2013
    Assignee: The General Hospital Corporation
    Inventors: Lee Josephson, Ralph Weissleder, J. Manuel Perez
  • Patent number: 8372944
    Abstract: A method of making a hyperbranched amphiphilic polyester compound includes drying under vacuum a mixture of 2-(4-hydroxybutyl)-malonic acid and p-toluene sulphonic acid as catalyst. The vacuum is then released with a dry inert gas after drying. The dried mixture is heated under the inert gas at a temperature sufficient for polymerization. The inert gas is evacuated while continuing to heat the mixture. The formed polymer is then dissolved in dimethylformamide and precipitated out by adding methanol. Modifications of the method yield nanoparticles of polyesters having properties suited for coencapsulating fluorescent dyes together with therapeutic drugs, resulting in theranostic nanoparticles, that is, nanoparticles useful in both therapeutic treatments and diagnostic methods.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: February 12, 2013
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: J. Manuel Perez, Santimukul Santra
  • Patent number: 8236284
    Abstract: Disclosed are nanoparticles having a metallic core consisting essentially of superparamagnetic iron oxide; a polymeric coat surrounding said core, the coat having a matrix of polyacrylic acid and forming an outer periphery of said nanoparticle; a plurality of hydrophobic pockets formed by the polymeric coat; a plurality of carboxylic groups along an outer periphery of the polymeric coat and effective to conjugate with a predetermined targeting ligand which functionalizes the nanoparticle; a lipophylic fluorescent dye encapsulated in the plurality of hydrophobic pockets; and a drug encapsulated in the plurality of hydrophobic pockets. Associated methods of making the nanoparticles and of treatments using the nanoparticles are also disclosed.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: August 7, 2012
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventors: J. Manuel Perez, Santimukul Santra