Patents by Inventor J. Parce
J. Parce has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20080032134Abstract: Ligand compositions for use in preparing discrete coated nanostructures are provided, as well as the coated nanostructures themselves and devices incorporating same. Methods for post-deposition shell formation on a nanostructure and for reversibly modifying nanostructures are also provided. The ligands and coated nanostructures of the present invention are particularly useful for close packed nanostructure compositions, which can have improved quantum confinement and/or reduced cross-talk between nanostructures.Type: ApplicationFiled: February 13, 2007Publication date: February 7, 2008Applicant: NANOSYS, Inc.Inventors: Jeffery Whiteford, Rhett Brewer, Mihai Buretea, Jian Chen, Karen Cruden, Xiangfeng Duan, William Freeman, David Heald, Francisco Leon, Chao Liu, Andreas Meisel, Kyu Min, J. Parce, Erik Scher
-
Publication number: 20080026532Abstract: Methods and apparatuses for nanoenabled memory devices and anisotropic charge carrying arrays are described. In an aspect, a memory device includes a substrate, a source region of the substrate, and a drain region of the substrate. A population of nanoelements is deposited on the substrate above a channel region, the population of nanolements in one embodiment including metal quantum dots. A tunnel dielectric layer is formed on the substrate overlying the channel region, and a metal migration barrier layer is deposited over the dielectric layer. A gate contact is formed over the thin film of nanoelements. The nanoelements allow for reduced lateral charge transfer. The memory device may be a single or multistate memory device.Type: ApplicationFiled: September 5, 2007Publication date: January 31, 2008Applicant: NANOSYS, INC.Inventors: Xiangfeng Duan, Calvin Chow, David Heald, Chunming Niu, J. Parce, David Stumbo
-
Publication number: 20080020235Abstract: The present invention provides matrixes doped with semiconductor nanocrystals. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. The present invention also provides processes for producing matrixes comprising semiconductor nanocrystals.Type: ApplicationFiled: November 7, 2006Publication date: January 24, 2008Applicant: Nanosys, Inc.Inventors: J. Parce, Jian Chen, Robert Dubrow, William Freeman, Erik Scher, Jeffery Whiteford
-
Publication number: 20070296032Abstract: Artificial dielectrics using nanostructures, such as nanowires, are disclosed. In embodiments, artificial dielectrics using other nanostructures, such as nanorods, nanotubes or nanoribbons and the like are disclosed. The artificial dielectric includes a dielectric material with a plurality of nanowires (or other nanostructures) embedded within the dielectric material. Very high dielectric constants can be achieved with an artificial dielectric using nanostructures. The dielectric constant can be adjusted by varying the length, diameter, carrier density, shape, aspect ratio, orientation and density of the nanostructures. Additionally, a controllable artificial dielectric using nanostructures, such as nanowires, is disclosed in which the dielectric constant can be dynamically adjusted by applying an electric field to the controllable artificial dielectric. A wide range of electronic devices can use artificial dielectrics with nanostructures to improve performance.Type: ApplicationFiled: August 15, 2005Publication date: December 27, 2007Applicant: Nanosys, Inc.Inventors: David Stumbo, Stephen Empedocles, Francisco Leon, J. Parce
-
Publication number: 20070247904Abstract: Methods and apparatuses for nanoenabled memory devices and anisotropic charge carrying arrays are described. In an aspect, a memory device includes a substrate, a source region of the substrate, and a drain region of the substrate. A population of nanoelements is deposited on the substrate above a channel region, the population of nanolements in one embodiment including metal quantum dots. A tunnel dielectric layer is formed on the substrate overlying the channel region, and a metal migration barrier layer is deposited over the dielectric layer. A gate contact is formed over the thin film of nanoelements. The nanoelements allow for reduced lateral charge transfer. The memory device may be a single or multistate memory device.Type: ApplicationFiled: June 22, 2007Publication date: October 25, 2007Applicant: NANOSYS, INC.Inventors: Xiangfeng Duan, Calvin Chow, David Heald, Chunming Niu, J. Parce, David Stumbo
-
Publication number: 20070238314Abstract: The present invention relates to a system and process for producing a nanowire-material composite. A substrate having nanowires attached to a portion of at least one surface is provided. A material is deposited over the portion to form the nanowire-material composite. The process further optionally comprises separating the nanowire-material composite from the substrate to form a freestanding nanowire-material composite. The freestanding nanowire material composite is optionally further processed into a electronic substrate. A variety of electronic substrates can be produced using the methods described herein. For example, a multi-color light-emitting diode can be produced from multiple, stacked layers of nanowire-material composites, each composite layer emitting light at a different wavelength.Type: ApplicationFiled: September 14, 2005Publication date: October 11, 2007Applicant: Nanosys, Inc.Inventors: Mihai Buretea, Jian Chen, Calvin Chow, Chunming Niu, Yaoling Pan, J. Parce, Linda Romano, David Stumbo
-
Publication number: 20070228439Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.Type: ApplicationFiled: June 8, 2007Publication date: October 4, 2007Applicant: NANOSYS, INC.Inventors: Xiangfeng Duan, Chunming Niu, Stephen Empedocles, Linda Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David Stumbo, J. Parce, Jay Goldman
-
Publication number: 20070187768Abstract: Methods and apparatuses for nanoenabled memory devices and anisotropic charge carrying arrays are described. In an aspect, a memory device includes a substrate, a source region of the substrate, and a drain region of the substrate. A population of nanoelements is deposited on the substrate above a channel region, the population of nanolements in one embodiment including metal quantum dots. A tunnel dielectric layer is formed on the substrate overlying the channel region, and a metal migration barrier layer is deposited over the dielectric layer. A gate contact is formed over the thin film of nanoelements. The nanoelements allow for reduced lateral charge transfer. The memory device may be a single or multistate memory device.Type: ApplicationFiled: April 3, 2007Publication date: August 16, 2007Applicant: NANOSYS, INC.Inventors: Xiangfeng Duan, Calvin Chow, David Heald, Chunming Niu, J. Parce, David Stumbo
-
Publication number: 20070177147Abstract: The present invention provides a microfluidic system for electrophoretic analysis of materials in the fields of chemistry, biochemistry, biotechnology, molecular biology and numerous other fields. Light absorbance signals are received by a photodetector from periodically spaced regions along a channel in the microfluidic system. The signals received by the photodetector are modulated by the movement of species bands through the channel under electrophoretic forces. By Fourier analysis, the velocity of each species band is determined, and identification of the species is made based on its electrophoretic mobility in the channel.Type: ApplicationFiled: March 26, 2007Publication date: August 2, 2007Applicant: Caliper Life Sciences, Inc.Inventor: J. Parce
-
Publication number: 20070157973Abstract: Improved microfluidic devices, systems, and methods allow selective transportation of fluids within microfluidic channels of a microfluidic network by applying, controlling, and varying pressures at a plurality of reservoirs. Modeling the microfluidic network as a series of nodes connected together by channel segments and determining the flow resistance characteristics of the channel segments may allow calculation of fluid flows through the channel segments resulting from a given pressure configuration at the reservoirs. To effect a desired flow within a particular channel or series of channels, reservoir pressures may be identified using the network model. Viscometers or other flow sensors may measure flow characteristics within the channels, and the measured flow characteristics can be used to calculate pressures to generate a desired flow. Multi-reservoir pressure modulator and pressure controller systems can optionally be used in conjunction with electrokinetic or other fluid transport mechanisms.Type: ApplicationFiled: February 3, 2007Publication date: July 12, 2007Applicant: Caliper Life Sciences, Inc.Inventors: Ring-Ling Chien, J. Parce, Andrea Chow, Anne Kopf-Sill
-
Publication number: 20070151852Abstract: Methods and systems that employ hybrid fluid flow profiles for optimized movement of materials through channel networks. These systems employ hybrid pressure-based and electrokinetic based flow systems for moving materials through interconnected channel networks while maintaining interconnection among the various channel segments. In particular, the invention is generally directed to channel networks where flow in a first channel segment is driven by pressure flow with its consequent parabolic flow profile, while flow in an interconnected channel segment is dominated by electrokinetic flow with its consequent plug flow profile. The invention also provides channel networks wherein fluid flow in channel segments is driven by both pressure and electric field and the multiple species contained in a fluid plug are separated by altering the applied pressure and electric fields in the various channel segments of the channel networks.Type: ApplicationFiled: November 7, 2006Publication date: July 5, 2007Applicant: CALIPER LIFE SCIENCES, INC.Inventors: Ring-Ling Chien, J. Parce, Michael Spaid
-
Publication number: 20070120167Abstract: A method and apparatus for an electronic substrate having a plurality of semiconductor devices is described. A thin film of nanowires is formed on a substrate. The thin film of nanowires is formed to have a sufficient density of nanowires to achieve an operational current level. A plurality of semiconductor regions are defined in the thin film of nanowires. Contacts are formed at the semiconductor device regions to thereby provide electrical connectivity to the plurality of semiconductor devices. Furthermore, various materials for fabricating nanowires, thin films including p-doped nanowires and n-doped nanowires, nanowire heterostructures, light emitting nanowire heterostructures, flow masks for positioning nanowires on substrates, nanowire spraying techniques for depositing nanowires, techniques for reducing or eliminating phonon scattering of electrons in nanowires, and techniques for reducing surface states in nanowires are described.Type: ApplicationFiled: November 21, 2006Publication date: May 31, 2007Applicant: Nanosys, Inc.Inventors: Xiangfeng Duan, Chunming Niu, Stephen Empedocles, Linda Romano, Jian Chen, Vijendra Sahi, Lawrence Bock, David Stumbo, J. Parce, Jay Goldman
-
Publication number: 20070110633Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.Type: ApplicationFiled: December 29, 2006Publication date: May 17, 2007Inventors: Steven Sundberg, J. Parce, Calvin Chow
-
Publication number: 20070102297Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.Type: ApplicationFiled: December 29, 2006Publication date: May 10, 2007Inventors: Steven Sundberg, J. Parce, Calvin Chow
-
Publication number: 20070102295Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.Type: ApplicationFiled: December 29, 2006Publication date: May 10, 2007Inventors: Steven Sundberg, J. Parce, Calvin Chow
-
Publication number: 20070102296Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.Type: ApplicationFiled: December 29, 2006Publication date: May 10, 2007Inventors: Steven Sundberg, J. Parce, Calvin Chow
-
Publication number: 20070099200Abstract: The present invention provides novel microfluidic devices and methods for performing pulsed field mobility shift assays in microfluidic devices. In particular the devices and methods of the invention utilize differences between electrophoretic mobilities (e.g., as between reactants and products, especially in non-fluorogenic reactions) in order to separate the species and thus analyze the reaction.Type: ApplicationFiled: April 25, 2006Publication date: May 3, 2007Applicant: Caliper Life Sciences, Inc.Inventors: Andrea Chow, John Owicki, J. Parce
-
Publication number: 20070092400Abstract: Fluid introduction is facilitated through the use of a port which extends entirely through a microfluidic substrate. Capillary forces can be used to retain the fluid within the port, and a series of samples or other fluids may be introduced through a single port by sequentially blowing the fluid out through the substrate and replacing the removed fluid with an alternate fluid, or by displacing the fluid in part with additional fluid. In another aspect, microfluidic substrates have channels which varying in cross-sectional dimension so that capillary action spreads a fluid only within a limited portion of the channel network. In yet another aspect, the introduction ports may include a multiplicity of very small channels leading from the port to a fluid channel, so as to filter out particles or other contaminants which might otherwise block the channel at the junction between the channel and the introduction port.Type: ApplicationFiled: December 29, 2006Publication date: April 26, 2007Inventors: Steven Sundberg, J. Parce, Calvin Chow
-
Publication number: 20070034833Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.Type: ApplicationFiled: July 24, 2006Publication date: February 15, 2007Inventors: J. Parce, Paul Bernatis, Robert Dubrow, William Freeman, Joel Gamoras, Shihai Kan, Andreas Meisel, Baixin Qian, Jeffery Whiteford, Jonathan Ziebarth
-
Publication number: 20070032091Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).Type: ApplicationFiled: July 28, 2006Publication date: February 8, 2007Applicant: NANOSYS, INC.Inventors: David Heald, Karen Cruden, Xiangfeng Duan, Chao Liu, J. Parce