Patents by Inventor Jérôme Faist

Jérôme Faist has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230307890
    Abstract: A quantum cascade laser or interband cascade laser for outputting a frequency comb. The laser's active waveguide comprises a combination of narrow and wide sections which are engineered in combination such that the laser is operable to produce lasing only in the fundamental mode across the operating wavelength range, the narrow section squeezing light propagating in the waveguide to output a frequency comb via four-wave mixing. The narrow and wide sections are further engineered to reduce the waveguide's net GVD, and also to reduce the GVD variation across the operating range compared to a comparable waveguide that is of constant width, thus producing a more stable frequency comb. The proportion of the laser's full dynamic range (i.e. from threshold to the rollover current where the maximum output power is achieved) over which lasing remains in the frequency comb regime is thereby increased compared with a constant width single mode waveguide.
    Type: Application
    Filed: August 18, 2021
    Publication date: September 28, 2023
    Inventors: Ruijun WANG, Jérôme FAIST
  • Patent number: 11070030
    Abstract: A waveguide heterostructure for a semiconductor laser with an active part, comprising an active region layer depending of the type of semiconductor used, which is sandwiched between an electrode layer and a substrate, usable for dispersion compensation in a semiconductor laser frequency comb setup, an optical frequency comb setup and a manufacturing method.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: July 20, 2021
    Inventors: Jérôme Faist, Yves Bidaux, Filippos Kapsalidis
  • Publication number: 20210006038
    Abstract: An optical frequency comb setup including a semiconductor cascade laser drivable by a laser driver, emitting a laser beam through an end facet of the semiconductor cascade laser with a frequency comb with at least two given individual emission frequencies, repetition frequency, carrier envelope offset frequency shows improved comb stability and/or comb formation and/or comb bandwidth. This is achieved by an external cavity added outside of the cavity of the semiconductor cascade laser, having a reflective element with a mirror surface reflecting the at least two individual emission frequencies being arranged in a relative distance to the end facet allowing to adapt repetition frequency and/or carrier envelope offset frequency and/or the dispersion seen by the light in the optical frequency comb setup.
    Type: Application
    Filed: December 5, 2018
    Publication date: January 7, 2021
    Applicant: IRSWEEP AG
    Inventors: Johannes David HILLBRAND, Pierre JOUY, Jérôme FAIST, Markus MANGOLD, Christopher TCHERVENKOV
  • Publication number: 20200287353
    Abstract: A waveguide heterostructure for a semiconductor laser with an active part, comprising an active region layer depending of the type of semiconductor used, which is sandwiched between an electrode layer and a substrate, usable for dispersion compensation in a semiconductor laser frequency comb setup, an optical frequency comb setup and a manufacturing method.
    Type: Application
    Filed: September 27, 2018
    Publication date: September 10, 2020
    Applicant: ETH Zürich
    Inventors: Jérôme FAIST, Yves BIDAUX, Filippos KAPSALIDIS
  • Patent number: 10374393
    Abstract: Semiconductor Quantum Cascade Lasers (QCLs), in particular mid-IR lasers emitting at wavelengths of about 3-50 ?m, are often designed as deep etched buried heterostructure QCLs. The buried heterostructure configuration is favored since the high thermal conductivity of the burying layers, usually of InP, and the low losses guarantee devices high power and high performance. However, if such QCLs are designed for and operated at short wavelengths, a severe disadvantage shows up: the high electric field necessary for such operation drives the operating current partly inside the insulating burying layer. This reduces the current injected into the active region and produces thermal losses, thus degrading performance of the QCL. The invention solves this problem by providing, within the burying layers, effectively designed current blocking or quantum barriers of, e.g. AIAs, InAIAs, InGaAs, InGaAsP, or InGaSb, sandwiched between the usual InP or other burying layers, intrinsic or Fe-doped.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: August 6, 2019
    Assignee: Alpes Lasers SA
    Inventors: Alfredo Bismuto, Jérôme Faist, Emilio Gini, Borislav Hinkov
  • Patent number: 10027425
    Abstract: A method for optical and electrical signal processing of a multi-heterodyne signal generated by a multi-mode semi-conductor laser, for a system comprising two laser sources and an sample interaction unit. At least the beam of one of the laser passes through said sample interaction unit before being combined on a detector. The first laser is tuned (40=>42) by an amount keeping the tuning result within the available detector bandwidth (55). Then the second laser is roughly tuned by the same amount as the tuning of the first laser to bring back the signal to the vicinity (48) of the original place in the RF-domain and within the bandwidth (55) of the detector. The tuning steps are repeated with different value of mode spacing for reconstructing the sample spectrum and provide a high resolution image of the dip (41) absorption line (40).
    Type: Grant
    Filed: June 16, 2015
    Date of Patent: July 17, 2018
    Assignee: ETH Zurich
    Inventors: Andreas Hugi, Gustavo Filipe Ferreira Villares, Jérôme Faist
  • Publication number: 20170373473
    Abstract: Semiconductor Quantum Cascade Lasers (QCLs), in particular mid-IR lasers emitting at wavelengths of about 3-50 ?m, are often designed as deep etched buried heterostructure QCLs. The buried heterostructure configuration is favored since the high thermal conductivity of the burying layers, usually of InP, and the low losses guarantee devices high power and high performance. However, if such QCLs are designed for and operated at short wavelengths, a severe disadvantage shows up: the high electric field necessary for such operation drives the operating current partly inside the insulating burying layer. This reduces the current injected into the active region and produces thermal losses, thus degrading performance of the QCL. The invention solves this problem by providing, within the burying layers, effectively designed current blocking or quantum barriers of, e.g. AIAs, InAIAs, InGaAs, InGaAsP, or InGaSb, sandwiched between the usual InP or other burying layers, intrinsic or Fe-doped.
    Type: Application
    Filed: December 3, 2014
    Publication date: December 28, 2017
    Inventors: Alfredo BISMUTO, Jérôme FAIST, Emilio GINI, Borislav HINKOV
  • Publication number: 20170201328
    Abstract: A method for optical and electrical signal processing of a multi-heterodyne signal generated by a multi-mode semi-conductor laser, for a system comprising two laser sources and an sample interaction unit. At least the beam of one of the laser passes through said sample interaction unit before being combined on a detector. The first laser is tuned (40=>42) by an amount keeping the tuning result within the available detector bandwidth (55). Then the second laser is roughly tuned by the same amount as the tuning of the first laser to bring back the signal to the vicinity (48) of the original place in the RF-domain and within the bandwidth (55) of the detector. The tuning steps are repeated with different value of mode spacing for reconstructing the sample spectrum and provide a high resolution image of the dip (41) absorption line (40).
    Type: Application
    Filed: June 16, 2015
    Publication date: July 13, 2017
    Inventors: Andreas Hugi, Gustavo Filipe Ferreira Villares, Jérôme Faist
  • Patent number: 9293531
    Abstract: A tensile strain state in semiconductor components is adjusted. A pretensioned (tensile strain) layer is applied to a substrate (FIG. 1, (A)). Bridge structures (FIG. 1, (B)) are introduced in the layers by lithography and etching. The bridges are connected to the layer on both sides and are thus continuous. The geometric shape of the bridges, formed with a cross-section modulation, is determined by the windows (FIG. 1 (C)) in the layer. When the substrate is etched selectively, the bridge is undercut through the windows. The geometric structuring of the cross-section (FIG. 1, (D)) causes a redistribution of the originally homogeneous strain when the bridges are detached from the substrate, with the larger cross-sections relaxing at the expense of the smaller cross-sections, where the pretension is increased. Only a multiplication of stresses (or strain) originally present in the sample is possible, with the multiplication factor determined by lengths, widths and depths, and/or the relationships thereof.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: March 22, 2016
    Assignees: PAUL SCHERRER INSTITUT, ETH ZUERICH
    Inventors: Jerome Faist, Gustav Schiefler, Hans Christian Sigg, Ralph Spolenak, Martin Süss
  • Patent number: 9209600
    Abstract: Semiconductor lasers, in particular Quantum Cascade Lasers (QCLs) are tuable especially in the mid-IR spectral range, e.g. in wavelengths of about 3-14 ?m, by precisely controlling the laser's temperature in the vicinity of the active region. The present invention introduces a novel design for locally heating the active region, thereby allowing fast heating and thus tuning a laser. It is generally applicable for lasers across the field, e.g. to QCLs with multi-color emitters or to Vertical-Cavity Single-Emitter Lasers (VCSELs) or to Distributed Feedback (DFB) lasers. Essentially, the invention consists of structurally integrating a heating resistor as part of the laser, placed close to the component to be temperature-controlled, i.e. the active region or the grating, etc., and feeding this resistor with a variable electrical current in order to locally control the thermal dissipation.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: December 8, 2015
    Assignee: Alpes Lasers SA
    Inventors: Alfredo Bismuto, Johanna Wolf, Antoine Mueller, Jerome Faist
  • Publication number: 20150078411
    Abstract: Semiconductor lasers, in particular Quantum Cascade Lasers (QCLs) are tuable especially in the mid-IR spectral range, e.g. in wavelengths of about 3-14 ?m, by precisely controlling the laser's temperature in the vicinity of the active region. The present invention introduces a novel design for locally heating the active region, thereby allowing fast heating and thus tuning a laser. It is generally applicable for lasers across the field, e.g. to QCLs with multi-color emitters or to Vertical-Cavity Single-Emitter Lasers (VCSELs) or to Distributed Feedback (DFB) lasers. Essentially, the invention consists of structurally integrating a heating resistor as part of the laser, placed close to the component to be temperature-controlled, i.e. the active region or the grating, etc., and feeding this resistor with a variable electrical current in order to locally control the thermal dissipation.
    Type: Application
    Filed: September 9, 2014
    Publication date: March 19, 2015
    Inventors: Alfredo BISMUTO, Johanna WOLF, Antoine MUELLER, Jerome FAIST
  • Publication number: 20140197375
    Abstract: A tensile strain state in semiconductor components is adjusted. A pretensioned (tensile strain) layer is applied to a substrate (FIG. 1, (A)). Bridge structures (FIG. 1, (B)) are introduced in the layers by lithography and etching. The bridges are connected to the layer on both sides and are thus continuous. The geometric shape of the bridges, formed with a cross-section modulation, is determined by the windows (FIG. 1 (C)) in the layer. When the substrate is etched selectively, the bridge is undercut through the windows. The geometric structuring of the cross-section (FIG. 1, (D)) causes a redistribution of the originally homogeneous strain when the bridges are detached from the substrate, with the larger cross-sections relaxing at the expense of the smaller cross-sections, where the pretension is increased. Only a multiplication of stresses (or strain) originally present in the sample is possible, with the multiplication factor determined by lengths, widths and depths, and/or the relationships thereof.
    Type: Application
    Filed: May 4, 2012
    Publication date: July 17, 2014
    Applicant: PAUL SCHERRER INSTITUT
    Inventors: Jerome Faist, Gustav Schiefler, Hans Christian Sigg, Ralph Spolenak, Martin Suss
  • Patent number: 8340145
    Abstract: A microwave circuit includes at least one inductive portion and at least one capacitive portion and having a resonance frequency, the microwave circuit including a material which acts as a dielectric for the capacitive portion, characterized in that the material acting as a dielectric includes an active region that is an electrically pumped semiconductor heterostructure having at least two energy levels whose energy separation is close to the resonance frequency of the microwave circuit.
    Type: Grant
    Filed: May 31, 2010
    Date of Patent: December 25, 2012
    Assignee: ETH Zurich
    Inventors: Christoph Walther, Jerome Faist, Giacomo Scalari, Maria Amanti, Mattias Beck, Markus Geiser
  • Patent number: 8320728
    Abstract: Briefly described, embodiments of this disclosure, among others, include solid state, thin film waveguides, detection systems including waveguides, and methods of detecting target compounds.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: November 27, 2012
    Assignee: Georgia Tech Research Corporation
    Inventors: Boris Mizaikoff, Christy Charlton, Jerome Faist, Marcella Giovannini
  • Publication number: 20120076164
    Abstract: A microwave circuit includes at least one inductive portion and at least one capacitive portion and having a resonance frequency, the microwave circuit including a material which acts as a dielectric for the capacitive portion, characterized in that the material acting as a dielectric includes an active region that is an electrically pumped semiconductor heterostructure having at least two energy levels whose energy separation is close to the resonance frequency of the microwave circuit.
    Type: Application
    Filed: May 31, 2010
    Publication date: March 29, 2012
    Applicant: ETH ZURICH
    Inventors: Christoph Walther, Jerome Faist, Giacomo Scalari, Maria Amanti, Mattias Beck, Markus Geiser
  • Patent number: 7944959
    Abstract: A quantum cascade laser amplifier (12) having an active zone (20) includes a stack of raw layers of semi-conductor materials formed in an epitaxial manner on a substrate layer (16) of indium. phosphide (InP) or gallium arsenide (GaAs) bearing the active zone (20), and a vertical anti-reflection coating (34) that covers an outlet face (28) of the laser radiation made of materials having given refraction indices and a predetermined thickness so that the entire laser radiation can flow through the outlet face. The anti-reflection coating (34) includes a first layer (36) having a first predetermined retraction index (n1) lower than the predetermined refraction index (nD), and at least a second layer (38) having a second refraction index (n2) higher than the predetermined refraction index (nD), wherein the first layer (36) of the anti-reflection coating (34) is made of yttrium fluoride (YF3).
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: May 17, 2011
    Assignee: Alpes Lasers SA
    Inventors: Richard Maulini, Stephane Blaser, Jerome Faist
  • Publication number: 20100046568
    Abstract: A quantic cascade laser amplifier (12) having an active zone (20) includes a stack of raw layers of semi-conductor materials formed in an epitaxial manner on a substrate layer (16) of indium phosphide (InP) or gallium arsenide (GaAs) bearing the active zone (20), and a vertical anti-reflection coating (34) that covers an outlet face (28) of the laser radiation made of materials having given refraction indices and a predetermined thickness so that the entire laser radiation can flow through the outlet face. The anti-reflection coating (34) includes a first layer (36) having a first predetermined refraction index (n1) lower than the predetermined refraction index (nD), and at least a second layer (38) having a second refraction index (n2) higher than the predetermined refraction index (nD), characterised in that the first layer (36) of the anti-reflection coating (34) is made of yttrium fluoride (YF3).
    Type: Application
    Filed: November 20, 2007
    Publication date: February 25, 2010
    Applicant: ALPES LASERS S.A.
    Inventors: Richard Maulini, Stephane Blaser, Jerome Faist
  • Publication number: 20090206242
    Abstract: Briefly described, embodiments of this disclosure, among others, include solid state, thin film waveguides, detection systems including waveguides, and methods of detecting target compounds.
    Type: Application
    Filed: September 8, 2006
    Publication date: August 20, 2009
    Inventors: Boris Mizaikoff, Christy Charlton, Jerome Faist, Marcella Giovannini
  • Patent number: 6922427
    Abstract: Quantum cascade laser especially comprising a gain region (14) formed from several layers (20) which each comprise: alternating strata of a first type (26) each defining a quantum barrier made of AlInAs and strata of a second type (28) each defining a quantum well made of InGaAs, and injection barriers (22), interposed between two of the layers (20). The layers of the gain region (14) each constitute an active region extending from one to the other of the injection barriers (22) which are adjacent to it. The strata (26, 28) are dimensioned such that: each of the wells comprises, in the presence of an electric field, at least a first upper subband, a second middle subband and a third lower subband and that the probability of an electron being present in the first subband is highest in the vicinity of one of the adjacent barriers, in the second subband in the middle part of the region and in the third subband in the vicinity of the other of the adjacent barriers.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: July 26, 2005
    Assignee: Alpes Lasers S.A.
    Inventors: Jérôme Faist, Mattias Beck, Antoine Muller
  • Publication number: 20040126912
    Abstract: The invention concerns a quantum cascade laser, comprising a substrate, a stack of layers, having a prismatic shape with substantially trapezoidal cross-section, comprising a lower surface arranged on the substrate, an upper surface and lateral surfaces, said stack forming a gain region and two walls between which the region is interposed, two electrodes arranged on either side of the stack, one of which is formed by an electrically conductive material layer covering at least partially the surface of the stack opposite the substrate, and an electrically insulating layer interposed between the two electrodes. The invention is characterised in that the electrically insulating layer completely covers the lateral surfaces of the prism, without overlapping on the upper surface, and its thickness is equal to at least a third of the stack thickness.
    Type: Application
    Filed: December 15, 2003
    Publication date: July 1, 2004
    Inventors: Mattias Beck, Jerome Faist, Antoine Muller