Patents by Inventor Jérôme Yerly

Jérôme Yerly has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220133145
    Abstract: The present invention relates to a magnetic resonance eye imaging method, wherein an eye image is obtained from magnetic resonance image data acquired while the eye is moving, comprising determining eye orientation information data during magnetic resonance image data acquisition; binning the acquired magnetic resonance image data into groups according to eye orientation information data; and constructing a magnetic resonance image eye image from a selection of groups of magnetic resonance image data.
    Type: Application
    Filed: March 5, 2020
    Publication date: May 5, 2022
    Inventors: Benedetta FRANCESCHIELLO, Lorenzo DI SOPRA, Josefina Adriana Maria BASTIAANSEN, Matthias STUBER, Micah MURRAY, Jerome YERLY
  • Patent number: 11154213
    Abstract: A method and system are provided for detecting a position of a periodically moving organ in a MRI examination. MR images of an examining person including a periodically moving organ are provided over a plurality of periodic cycles of the periodically moving organ. Based on the provided MR images, a pixel frequency is associated with each pixel of the MR images. Using the associated pixel frequencies and the positions of the pixels within the MR images, the position and the frequency of the periodically moving organ are determined.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: October 26, 2021
    Assignees: CENTRE HOSPITALIER UNIVERSITAIRE VAUDOIS, SIEMENS HEALTHCARE GMBH
    Inventors: Jérôme Chaptinel, Robin Demesmaeker, Jérôme Yerly, Tobias Kober, Davide Piccini
  • Patent number: 11147455
    Abstract: The disclosure relates to a method for the interactive acquisition of data from an object under investigation by a magnetic resonance system. The data is acquired from the object under investigation with the magnetic resonance system and images are automatically reconstructed and displayed in real time based on the data. A time interval is determined during which a predetermined condition is met in the images. Quality images are automatically reconstructed based on the data acquired within the time interval. The temporal resolution during reconstruction of the quality images is higher than the temporal resolution during reconstruction of the images.
    Type: Grant
    Filed: April 3, 2018
    Date of Patent: October 19, 2021
    Assignees: CENTRE HOSPITALIER UNIVERSITAIRE VAUDOIS, SIEMENS HEALTHCARE GMBH
    Inventors: Jérôme Chaptinel, Tobias Kober, Davide Piccini, Peter Speier, Matthias Stuber, Jérôme Yerly
  • Patent number: 10832451
    Abstract: In order to reduce the time and effort required to generate high-quality image reconstructions, a machine-trained neural network may assign a quality score to an image at each iteration of a reconstruction. The neural network may confirm that the iterative reconstruction process increases image quality as each iteration converges to the solution of an optimization problem. The image quality score generated by the neural network may drive the reconstruction toward better image quality by contributing to a regularization term of a cost function minimized by the optimization problem. The neural network may allow for multiple reconstruction of image data to be performed rapidly and for the highest image quality reconstruction to be identified. Additionally, the neural network may provide exit criteria of the iterative reconstruction or may contribute to the optimization problem.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: November 10, 2020
    Assignees: SIEMENS HEALTHCARE GMBH, CENTRE HOSPITALIER UNIVERSITAIRE VAUDOIS
    Inventors: Robin Demesmaeker, Tobias Kober, Davide Piccini, Jérôme Yerly
  • Publication number: 20200027251
    Abstract: In order to reduce the time and effort required to generate high-quality image reconstructions, a machine-trained neural network may assign a quality score to an image at each iteration of a reconstruction. The neural network may confirm that the iterative reconstruction process increases image quality as each iteration converges to the solution of an optimization problem. The image quality score generated by the neural network may drive the reconstruction toward better image quality by contributing to a regularization term of a cost function minimized by the optimization problem. The neural network may allow for multiple reconstruction of image data to be performed rapidly and for the highest image quality reconstruction to be identified. Additionally, the neural network may provide exit criteria of the iterative reconstruction or may contribute to the optimization problem.
    Type: Application
    Filed: July 18, 2018
    Publication date: January 23, 2020
    Inventors: Robin Demesmaeker, Tobias Kober, Davide Piccini, Jérôme Yerly
  • Publication number: 20180289262
    Abstract: The disclosure relates to a method for the interactive acquisition of data from an object under investigation by a magnetic resonance system. The data is acquired from the object under investigation with the magnetic resonance system and images are automatically reconstructed and displayed in real time based on the data. A time interval is determined during which a predetermined condition is met in the images. Quality images are automatically reconstructed based on the data acquired within the time interval. The temporal resolution during reconstruction of the quality images is higher than the temporal resolution during reconstruction of the images.
    Type: Application
    Filed: April 3, 2018
    Publication date: October 11, 2018
    Inventors: Jérôme Chaptinel, Tobias Kober, Davide Piccini, Peter Speier, Matthias Stuber, Jérôme Yerly
  • Publication number: 20180289281
    Abstract: A method and system are provided for detecting a position of a periodically moving organ in a MRI examination. MR images of an examining person including a periodically moving organ are provided over a plurality of periodic cycles of the periodically moving organ. Based on the provided MR images, a pixel frequency is associated with each pixel of the MR images. Using the associated pixel frequencies and the positions of the pixels within the MR images, the position and the frequency of the periodically moving organ are determined.
    Type: Application
    Filed: April 6, 2018
    Publication date: October 11, 2018
    Inventors: Jérôme Chaptinel, Robin Demesmaeker, Jérôme Yerly, Tobias Kober, Davide Piccini