Patents by Inventor Jörg Büchner
Jörg Büchner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230138157Abstract: The invention relates to the use of a separating medium, containing at least one essential oil or consisting of at least one essential oil, selected from the group consisting of phenols, phenylpropanoids and furanocoumarins, for separating at least two joining parts which are joined by means of an adhesive bond.Type: ApplicationFiled: March 19, 2021Publication date: May 4, 2023Inventors: Christoph Thiebes, Joerg Buechner, Thomas Fait, Oliver Kirstein
-
Publication number: 20230136555Abstract: The present invention relates to aqueous dispersions containing at least one polyurethane and at least one compound with a biocidal action, the at least one compound with a biocidal action containing at least one peroxide group and being present in a quantity of between 0.01 and 1,000 mmol/kg, in relation to the total aqueous dispersion, and relates to a process for preparing a biocide-free aqueous polyurethane dispersion, said process comprising at least the steps: (A) preparing an aqueous solution containing at least one polyurethane and at least one compound with a biocidal action, the at least one compound with a biocidal action containing at least one peroxide group and being present in a quantity of between 0.Type: ApplicationFiled: March 15, 2021Publication date: May 4, 2023Inventors: Joerg Buechner, Rainer Trinks, Thomas Fait, Oliver Kirstein
-
Publication number: 20230135472Abstract: The invention relates to the use of mixtures of water and essential oils selected from the group consisting of phenols, phenylpropanoids and furanocoumarins, for separating multilayered composites for the segregated recycling of polymer/metal films.Type: ApplicationFiled: March 19, 2021Publication date: May 4, 2023Inventors: Joerg Buechner, Christoph Thiebes, Thomas Fait, Oliver Kirstein
-
Patent number: 11504906Abstract: The invention relates to a method for producing a three-dimensional object by means of a powder-based additive production method from at least one first powdery material, wherein the at least one first powdery material comprises at least one first compound having a first reactive group a). The first reactive group a) is selected from the group consisting of an isocyanate group, a blocked isocyanate group, or a mixture thereof. The invention further relates to a component produced using the method according to the invention, and to powdery material that is suited for the method according to the invention.Type: GrantFiled: May 9, 2018Date of Patent: November 22, 2022Assignee: Covestro Deutschland AGInventors: Dirk Achten, Thomas Buesgen, Thomas Faecke, Bettina Mettmann, Joerg Buechner, Hans-Josef Laas, Ting Liu
-
Patent number: 11440242Abstract: A process for manufacturing an article comprises the steps of: I) applying a filament of an at least partially fused construction material to a support so as to obtain a layer of the construction material which corresponds to a first selected cross-section of the article; II) applying a filament of the at least partially fused construction material to a previously applied layer of the construction material so as to obtain a further layer of the construction material which corresponds to a further selected cross-section of the article and which is bonded to the previously applied layer; and III) repeating step II) until the article is formed. At least steps II) and III) are carried out in a chamber and the construction material comprises a fusible polymer. The fusible polymer has a fusion range (DSC, differential scanning calorimetry; 2nd heating at a heating rate of 5 K/min.) of ?20° C. to ?100° C.Type: GrantFiled: September 11, 2017Date of Patent: September 13, 2022Assignee: Covestro Deutschland AGInventors: Dirk Achten, Thomas Büsgen, Dirk Dijkstra, Nicolas Degiorgio, Roland Wagner, Levent Akbas, Peter Reichert, Jörg Büchner
-
Patent number: 11247388Abstract: A method of applying a material comprising a fusible polymer comprises the step of: applying a filament of the at least partly molten material comprising a fusible polymer from a discharge opening of a discharge element to a first substrate. The fusible polymer has the following properties: a melting point (DSC, differential scanning calorimetry; 2nd heating at heating rate 5° C./min) within a range from ?35° C. to ?150° C.; a glass transition temperature (DMA, dynamic-mechanical analysis to DIN EN ISO 6721-1:2011) within a range from ??70° C. to ?110° C.; wherein the filament, during the application process, has an application temperature of ?100° C. above the melting point of the fusible polymer for ?20 minutes. There are still free NCO groups in the material including the fusible polymer.Type: GrantFiled: July 12, 2019Date of Patent: February 15, 2022Assignee: Covestro Intellectual Property GmbH & Co. KGInventors: Dirk Achten, Thomas Buesgen, Joerg Tillack, Fabian Schuster, Ralf Rott, Nicolas Degiorgio, Jonas Kuenzel, Joerg Buechner, Wolfgang Arndt, Martin Melchiors, Harald Kraus
-
Patent number: 11213999Abstract: A method of applying a material comprising a fusible polymer comprises the step of: applying a filament of the at least partly molten material comprising a fusible polymer from a discharge opening of a discharge element to a first substrate. The fusible polymer has the following properties: a melting point (DSC, differential scanning calorimetry; 2nd heating at heating rate 5° C./min) within a range from ?35° C. to ?150° C.; a glass transition temperature (DMA, dynamic-mechanical analysis to DIN EN ISO 6721-1:2011) within a range from ??70° C. to ?110° C.; wherein the filament, during the application process, has an application temperature of ?100° C. above the melting point of the fusible polymer for ?20 minutes. There are furthermore blocked NCO groups present in the material comprising the fusible polymer.Type: GrantFiled: July 12, 2019Date of Patent: January 4, 2022Assignee: Covestro Intellectual Property GmbH & Co. KGInventors: Dirk Achten, Thomas Buesgen, Joerg Tillack, Fabian Schuster, Nicolas Degiorgio, Jonas Kuenzel, Joerg Buechner, Wolfgang Arndt, Martin Melchiors, Harald Kraus
-
Publication number: 20210252778Abstract: A method of applying a material comprising a fusible polymer comprises the step of: applying a filament of the at least partly molten material comprising a fusible polymer from a discharge opening of a discharge element to a first substrate. The fusible polymer has the following properties: a melting point (DSC, differential scanning calorimetry; 2nd heating at heating rate 5° C./min) within a range from ?35° C. to ?150° C.; a glass transition temperature (DMA, dynamic-mechanical analysis to DIN EN ISO 6721-1:2011) within a range from ??70° C. to ?110° C.; wherein the filament, during the application process, has an application temperature of ?100° C. above the melting point of the fusible polymer for ?20 minutes. There are furthermore blocked NCO groups present in the material comprising the fusible polymer.Type: ApplicationFiled: July 12, 2019Publication date: August 19, 2021Inventors: Dirk Achten, Thomas Buesgen, Joerg Tillack, Fabian Schuster, Nicolas Degiorgio, Jonas Kuenzel, Joerg Buechner, Wolfgang Arndt, Martin Melchiors, Harald Kraus
-
Publication number: 20210245424Abstract: A method of applying a material comprising a fusible polymer comprises the step of: applying a filament of the at least partly molten material comprising a fusible polymer from a discharge opening of a discharge element to a first substrate. The fusible polymer has the following properties: a melting point (DSC, differential scanning calorimetry; 2nd heating at heating rate 5° C./min) within a range from ?35° C. to ?150° C.; a glass transition temperature (DMA, dynamic-mechanical analysis to DIN EN ISO 6721-1:2011) within a range from ??70° C. to ?110° C.; wherein the filament, during the application process, has an application temperature of ?100° C. above the melting point of the fusible polymer for ?20 minutes. There are still free NCO groups in the material including the fusible polymer.Type: ApplicationFiled: July 12, 2019Publication date: August 12, 2021Inventors: Dirk Achten, Thomas Buesgen, Joerg Tillack, Fabian Schuster, Ralf Rott, Nicolas Degiorgio, Jonas Kuenzel, Joerg Buechner, Wolfgang Arndt, Martin Melchiors, Harald Kraus
-
Patent number: 10926459Abstract: A process for manufacturing an article comprises the steps of: applying a layer that consists of particles to a target area; allowing, in a chamber, energy to act on a selected portion of the layer, according to a cross-section of the article, so that the particles in the selected portion are bonded, and repeating the steps of applying and allowing energy to act for a plurality of layers so that the bonded portions of the adjacent layers are bonded to form the article, at least part of the particles comprising a fusible polymer. The fusible polymer has a fusion range (DSC, differential scanning calorimetry; 2nd heating at a heating rate of 5 K/min.) of ?20° C. to ?100° C. The fusible polymer further has a complex viscosity \?*\ (determined by viscosity measurement in the melt using a plate-plate oscillating viscometer according to ISO 6721-10 at 100° C. and a shear rate of 1/s) of ?10 Pas to ?1000000 Pas. Finally, the temperature inside the chamber is ?50° C.Type: GrantFiled: September 11, 2017Date of Patent: February 23, 2021Assignee: Covestro Deutschland AGInventors: Dirk Achten, Thomas Büsgen, Dirk Dijkstra, Nicolas Degiorgio, Wolfgang Arndt, Levent Akbas, Roland Wagner, Peter Reichert, Jörg Büchner
-
Patent number: 10882942Abstract: The invention relates to storage-stable aqueous dispersions of hydrophilically modified polycarbodiimide resins, a method for producing same, and the use of a salt component to reduce carbodiimide hydrolysis in aqueous polycarbodiimide dispersions.Type: GrantFiled: December 12, 2018Date of Patent: January 5, 2021Assignee: Covestro Deutschland AGInventors: Joerg Buechner, Michael Ludewig, Evgeny Avtomonov, Martin Melchiors
-
Publication number: 20200385508Abstract: The invention relates to storage-stable aqueous dispersions of hydrophilically modified polycarbodiimide resins, a method for producing same, and the use of a salt component to reduce carbodiimide hydrolysis in aqueous polycarbodiimide dispersions.Type: ApplicationFiled: December 12, 2018Publication date: December 10, 2020Inventors: Joerg Buechner, Michael Ludewig, Evgeny Avtomonov, Martin Melchiors
-
Publication number: 20200055235Abstract: The invention relates to a method for producing a three-dimensional object by means of a powder-based additive production method from at least one first powdery material, wherein the at least one first powdery material comprises at least one first compound having a first reactive group a). The first reactive group a) is selected from the group consisting of an isocyanate group, a blocked isocyanate group, or a mixture thereof. The invention further relates to a component produced using the method according to the invention, and to powdery material that is suited for the method according to the invention.Type: ApplicationFiled: May 9, 2018Publication date: February 20, 2020Inventors: Dirk Achten, Thomas Buesgen, Thomas Faecke, Bettina Mettmann, Joerg Buechner, Hans-Josef Laas, Ting Liu
-
Publication number: 20190217533Abstract: A process for manufacturing an article comprises the steps of: I) applying a filament of an at least partially fused construction material to a support so as to obtain a layer of the construction material which corresponds to a first selected cross-section of the article; II) applying a filament of the at least partially fused construction material to a previously applied layer of the construction material so as to obtain a further layer of the construction material which corresponds to a further selected cross-section of the article and which is bonded to the previously applied layer; and III) repeating step II) until the article is formed. At least steps II) and III) are carried out in a chamber and the construction material comprises a fusible polymer. The fusible polymer has a fusion range (DSC, differential scanning calorimetry; 2nd heating at a heating rate of 5 K/min.) of ?20° C. to ?100° C.Type: ApplicationFiled: September 11, 2017Publication date: July 18, 2019Inventors: Dirk Achten, Thomas BÜSGEN, Dirk DIJKSTRA, Nicolas DEGIORGIO, Roland WAGNER, Levent AKBAS, Peter REICHERT, Jörg BÜCHNER
-
Publication number: 20190184632Abstract: A process for manufacturing an article comprises the steps of: applying a layer that consists of particles to a target area; allowing, in a chamber, energy to act on a selected portion of the layer, according to a cross-section of the article, so that the particles in the selected portion are bonded, and repeating the steps of applying and allowing energy to act for a plurality of layers so that the bonded portions of the adjacent layers are bonded to form the article, at least part of the particles comprising a fusible polymer. The fusible polymer has a fusion range (DSC, differential scanning calorimetry; 2nd heating at a heating rate of 5 K/min.) of ?20 ° C. to ?100 ° C. The fusible polymer further has a complex viscosity \?*\ (determined by viscosity measurement in the melt using a plate-plate oscillating viscometer according to ISO 6721-10 at 100° C. and a shear rate of 1/s) of ?10 Pas to ?1000000 Pas. Finally, the temperature inside the chamber is ?50° C.Type: ApplicationFiled: September 11, 2017Publication date: June 20, 2019Inventors: Dirk ACHTEN, Thomas BÜSGEN, Dirk DIJKSTRA, Nicolas DEGIORGIO, Wolfgang ARNDT, Levent AKBAS, Roland WAGNER, Peter REICHERT, Jörg BÜCHNER
-
Patent number: 9353221Abstract: The present invention relates to aqueous dispersions containing hydrophilized polycarbodiimides, methods for producing the aqueous dispersions according to the invention, their use as a constituent of binders in adhesives, lacquers, paints, paper coating compounds or in fiber nonwovens and articles made of wood, metal, textile, leather or plastic, which are treated with the aqueous dispersion according to the invention.Type: GrantFiled: March 28, 2011Date of Patent: May 31, 2016Assignee: Covestro Deutschland AGInventors: Evgeny Avtomonov, Harald Kraus, Sebastian Dörr, Dirk Achten, Jörg Büchner
-
Patent number: 9321939Abstract: Method for the production of adhesive-coated articles, articles obtainable thereby and their use A method for the production of adhesive-coated articles comprises the steps of: (I) providing a substrate; (II) applying a first polyurethane and/or polyurethane-polyurea polymer onto the substrate, the first polyurethane and/or polyurethane-polyurea polymer being capable of attaining an at least partially crystalline state with a final degree of crystallinity and wherein during and/or after the application the first polyurethane and/or polyurethane-polyurea polymer is present in a non-crystalline state.Type: GrantFiled: September 14, 2011Date of Patent: April 26, 2016Assignee: Covestro Deutschland AGInventors: Jörg Büchner, Harald Kraus, Pantea Nazaran, Matthias Wintermantel
-
Patent number: 9108357Abstract: The present invention relates to a process for overlaying a base substance with a multilayer decorative film in a vacuum forming, a multilayer decorative film for a secondary decoration used in such a vacuum forming process, to a multilayer decorative film excellent in adhesiveness, workability, and secondary physical properties such as heat resistance and hydrolysis resistance after forming and the use of such multilayer decorative film in a vacuum forming process.Type: GrantFiled: November 15, 2011Date of Patent: August 18, 2015Assignee: Bayer Intellectual Property GmbHInventors: Takahiko Ohwada, Jörg Büchner, Holger Mundstock
-
Patent number: 8980407Abstract: The invention relates to an aqueous adhesive composition containing at least one acrylate polymer with a glass transition temperature Tg>50° C. and at least one amorphous polyurethane or polyurethane-polyurea polymer with a glass transition temperature Tg<+10° C., the use of the adhesive compositions for the manufacture of heat-activated adhesive layers, and planar formations containing adhesive layers based on the adhesive composition.Type: GrantFiled: June 3, 2011Date of Patent: March 17, 2015Assignee: Bayer Intellectual Property GmbHInventors: Jörg Büchner, Harald Kraus, Pantea Nazaran, Dirk Dijkstra
-
Patent number: 8911851Abstract: A document (2) containing: electronic components (14) and/or diffractive security elements; at least one protective layer (4, 5) being arranged on one side or two protective layers (4, 5) being arranged on both sides of the electronic components (14) and/or of the diffractive security element, said protective layers being formed of a first base polymer, polymer layers (8, 9, 12, 13), being formed of a second base polymer being different from the first base polymer, into which the electronic components (14) and/or the diffractive security element with the protective layers (4, 5) are laminated; and adhesive layers with a latent-reactive adhesive (10, 11) being arranged at least between the polymer layers (8, 9, 12, 13) and the protective layers (4, 5), and wherein the core layer or protective layers are formed of a thermoplastic elastomer.Type: GrantFiled: July 20, 2009Date of Patent: December 16, 2014Assignee: Bayer MaterialScience AGInventors: Reinhard Löwe, Per Krüger, Michael Knebel, Jens Ehreke, Heinz Pudleiner, Mehmet-Cengiz Yesildag, Klaus Meyer, Dirk Pophusen, Jörg Büchner