Patents by Inventor Jörg Kock

Jörg Kock has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11280855
    Abstract: A magnetic field sensor includes at least two magnetoresistive (MR) sensor elements arranged in a half-bridge configuration. Each of the MR sensor elements includes a magnetic region having a magnetic anisotropy with a resultant magnetization. The magnetic anisotropy is created using an oblique incident deposition (OID) technique, with the magnetic regions being deposited at a nonzero deposition angle relative to a reference line oriented perpendicular to a surface of the magnetic field sensor. A system includes an encoder and the half-bridge configuration of the sensor elements. The encoder produces an external magnetic field, having predetermined magnetic variations in response to motion of the encoder, the magnetic field being detectable by the sensor elements. The resultant magnetization of the sensor elements is aligned by OID in a preferred direction perpendicular to the direction of the external magnetic field instead of utilizing a permanent magnet structure for providing a bias magnetic field.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: March 22, 2022
    Assignee: NXP B.V.
    Inventors: Stephan Marauska, Jörg Kock
  • Patent number: 10914611
    Abstract: A system includes a magnet having an axis of rotation, the magnet being configured to produce a magnetic field. The system further includes a plurality of magnetoresistive sensor elements, each of the magnetoresistive sensor elements having a magnetic free layer configured to generate a vortex magnetization pattern in the magnetic free layer, and the magnetoresistive sensor elements being configured to produce output signals in response to the magnetic field. A rotation angle of a rotating element to which the magnet is coupled may be determined using the plurality of output signals.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: February 9, 2021
    Assignee: NXP B.V.
    Inventors: Stephan Marauska, Edwin Schapendonk, Jörg Kock, Dennis Helmboldt, Ralf van Otten, Jaap Ruigrok
  • Patent number: 10914609
    Abstract: A system includes a magnet configured to produce a magnetic field, the magnet having an asymmetric magnetization configuration that produces a distinct feature in the magnetic field. The asymmetric magnetization configuration can be produced via an asymmetric physical characteristic, nonuniform magnetization strengths, nonuniform magnetization distributions, off-centered magnet, and so forth. Magnetic field sensors are configured to produce output signals in response to the magnetic field, the output signals being indicative of the distinct feature in the magnetic field. A processing circuit receives the output signals and determines a rotation angle for the magnet using the output signals, the rotation angle having a range of 0-360°.
    Type: Grant
    Filed: June 19, 2018
    Date of Patent: February 9, 2021
    Assignee: NXP B.V.
    Inventors: Stephan Marauska, Edwin Schapendonk, Dennis Helmboldt, Jaap Ruigrok, Ralf van Otten, Jan Przytarski, Jörg Kock
  • Publication number: 20210033685
    Abstract: A magnetic field sensor includes at least two magnetoresistive (MR) sensor elements arranged in a half-bridge configuration. Each of the MR sensor elements includes a magnetic region having a magnetic anisotropy with a resultant magnetization. The magnetic anisotropy is created using an oblique incident deposition (OID) technique, with the magnetic regions being deposited at a nonzero deposition angle relative to a reference line oriented perpendicular to a surface of the magnetic field sensor. A system includes an encoder and the half-bridge configuration of the sensor elements. The encoder produces an external magnetic field, having predetermined magnetic variations in response to motion of the encoder, the magnetic field being detectable by the sensor elements. The resultant magnetization of the sensor elements is aligned by OID in a preferred direction perpendicular to the direction of the external magnetic field instead of utilizing a permanent magnet structure for providing a bias magnetic field.
    Type: Application
    Filed: July 29, 2019
    Publication date: February 4, 2021
    Inventors: Stephan Marauska, Jörg Kock
  • Patent number: 10718825
    Abstract: A magnetic field sensor includes a magnetic sense element and a shield structure formed on a substrate. The shield structure fully encircles the magnetic sense element for suppressing stray magnetic fields along a first axis and a second axis, both of which are parallel to a surface of the substrate and perpendicular to one another. A magnetic field is oriented along a third axis perpendicular to the surface of the substrate, and the magnetic sense element is configured to sense a magnetic field along the first axis. A magnetic field deflection element, formed on the substrate proximate the magnetic sense element, redirects the magnetic field from the third axis into the first axis to be sensed as a measurement magnetic field by the magnetic sense element. At least two magnetic field sensors, each fully encircled by a shield structure, form a gradient unit for determining a magnetic field gradient.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: July 21, 2020
    Assignee: NXP B.V.
    Inventors: Stephan Marauska, Jörg Kock, Hartmut Matz, Mark Isler, Dennis Helmboldt
  • Patent number: 10591320
    Abstract: A system includes a magnetic sense element for detecting an external magnetic field along a sensing axis and a magnetic field source proximate the magnetic sense element for providing an auxiliary magnetic field along the sensing axis. The magnetic sense element produces a first output signal having a magnetic field signal component, responsive to the external magnetic field, that is modulated by an auxiliary magnetic field signal component responsive to the auxiliary magnetic field. A processing circuit identifies from the first output signal an influence of a magnetic interference field on the auxiliary magnetic field signal component, the magnetic interference field being directed along a non-sensing axis of the magnetic sense element, and applies a correction factor to the magnetic field signal component to produce a second output signal in which the influence of the magnetic interference field is substantially removed.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: March 17, 2020
    Assignee: NXP B.V.
    Inventors: Stephan Marauska, Jan Przytarski, Jörg Kock, Edwin Schapendonk
  • Publication number: 20200064157
    Abstract: A system includes a magnet having an axis of rotation, the magnet being configured to produce a magnetic field. The system further includes a plurality of magnetoresistive sensor elements, each of the magnetoresistive sensor elements having a magnetic free layer configured to generate a vortex magnetization pattern in the magnetic free layer, and the magnetoresistive sensor elements being configured to produce output signals in response to the magnetic field. A rotation angle of a rotating element to which the magnet is coupled may be determined using the plurality of output signals.
    Type: Application
    Filed: August 27, 2018
    Publication date: February 27, 2020
    Inventors: Stephan Marauska, Edwin Schapendonk, Jörg Kock, Dennis Helmboldt, Ralf van Otten, Jaap Ruigrok
  • Publication number: 20190383644
    Abstract: A system includes a magnet configured to produce a magnetic field, the magnet having an asymmetric magnetization configuration that produces a distinct feature in the magnetic field. The asymmetric magnetization configuration can be produced via an asymmetric physical characteristic, nonuniform magnetization strengths, nonuniform magnetization distributions, off-centered magnet, and so forth. Magnetic field sensors are configured to produce output signals in response to the magnetic field, the output signals being indicative of the distinct feature in the magnetic field. A processing circuit receives the output signals and determines a rotation angle for the magnet using the output signals, the rotation angle having a range of 0-360°.
    Type: Application
    Filed: June 19, 2018
    Publication date: December 19, 2019
    Inventors: Stephan Marauska, Edwin Schapendonk, Dennis Helmboldt, Jaap Ruigrok, Ralf van Otten, Jan Przytarski, Jörg Kock
  • Patent number: 10509082
    Abstract: A system includes first and second magnetic sense elements for producing first and second output signals, respectively, in response to an external magnetic field along a sensing axis parallel to a plane of the first sense element, a magnetization direction of the second element being rotated in the plane relative to a magnetization direction of the first element. The second output signal differs from the first output signal in dependency to a magnetic interference field along a non-sensing axis of the first magnetic field. A processing circuit, receives the first and second output signals, identifies from a relationship between the first and second output signals an influence of the magnetic interference field on the first output signal, and applies a correction factor to the first output signal to produce a resultant output signal in which the influence of the magnetic interference field is substantially removed.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: December 17, 2019
    Assignee: NXP B.V.
    Inventors: Jan Przytarski, Jörg Kock, Stephan Marauska, Edwin Schapendonk
  • Publication number: 20190242956
    Abstract: A system includes first and second magnetic sense elements for producing first and second output signals, respectively, in response to an external magnetic field along a sensing axis parallel to a plane of the first sense element, a magnetization direction of the second element being rotated in the plane relative to a magnetization direction of the first element. The second output signal differs from the first output signal in dependency to a magnetic interference field along a non-sensing axis of the first magnetic field. A processing circuit, receives the first and second output signals, identifies from a relationship between the first and second output signals an influence of the magnetic interference field on the first output signal, and applies a correction factor to the first output signal to produce a resultant output signal in which the influence of the magnetic interference field is substantially removed.
    Type: Application
    Filed: February 8, 2018
    Publication date: August 8, 2019
    Inventors: Jan Przytarski, Jörg Kock, Stephan Marauska, Edwin Schapendonk
  • Publication number: 20190198751
    Abstract: A method includes performing an ion beam etching process on a tunnel magnetoresistance (TMR) stack to remove material portions of a first magnetic layer and a tunnel barrier layer of the TMR stack. The ion beam etching process stops at a top surface of a second magnetic layer of the TMR stack. A protective layer is deposited over the TMR stack. Another etch process is performed to remove the protective layer such that a portion of the second magnetic layer is exposed from the protective layer and a spacer is formed from a remaining portion of the protective layer. The spacer surrounds sidewalls of the first magnetic layer and the tunnel barrier layer. The portion of the second magnetic layer exposed from the protective layer is removed so that a TMR sensor element remains, where the TMR sensor element includes a bottom magnet, a top magnet, and a tunnel junction.
    Type: Application
    Filed: February 26, 2019
    Publication date: June 27, 2019
    Inventors: Mark Isler, Klaus Reimann, Hartmut Matz, Jörg Kock
  • Publication number: 20190178684
    Abstract: A system includes a magnetic sense element for detecting an external magnetic field along a sensing axis and a magnetic field source proximate the magnetic sense element for providing an auxiliary magnetic field along the sensing axis. The magnetic sense element produces a first output signal having a magnetic field signal component, responsive to the external magnetic field, that is modulated by an auxiliary magnetic field signal component responsive to the auxiliary magnetic field. A processing circuit identifies from the first output signal an influence of a magnetic interference field on the auxiliary magnetic field signal component, the magnetic interference field being directed along a non-sensing axis of the magnetic sense element, and applies a correction factor to the magnetic field signal component to produce a second output signal in which the influence of the magnetic interference field is substantially removed.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 13, 2019
    Inventors: Stephan Marauska, Jan Przytarski, Jörg Kock, Edwin Schapendonk
  • Patent number: 10263179
    Abstract: A method includes performing an ion beam etching process on a tunnel magnetoresistance (TMR) stack to remove material portions of a first magnetic layer and a tunnel barrier layer of the TMR stack. The ion beam etching process stops at a top surface of a second magnetic layer of the TMR stack. A protective layer is deposited over the TMR stack. Another etch process is performed to remove the protective layer such that a portion of the second magnetic layer is exposed from the protective layer and a spacer is formed from a remaining portion of the protective layer. The spacer surrounds sidewalls of the first magnetic layer and the tunnel barrier layer. The portion of the second magnetic layer exposed from the protective layer is removed so that a TMR sensor element remains, where the TMR sensor element includes a bottom magnet, a top magnet, and a tunnel junction.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: April 16, 2019
    Assignee: NXP B.V.
    Inventors: Mark Isler, Klaus Reimann, Hartmut Matz, Jörg Kock
  • Patent number: 10261138
    Abstract: A system comprises at least one magnetic field sensor having a magnetic sense element formed on a substrate. The sense element senses a magnetic field along a sense axis oriented in a first direction parallel to a surface of the substrate. A shield structure is formed on the substrate. The shield structure has first and second shield portions and the magnetic sense element is disposed between the shield portions. Each of the shield portions includes a body and first and second brim segments extending from opposing ends of the body. The body is aligned parallel to a second direction perpendicular to the first direction and parallel to the surface of the substrate. The brim segments are aligned substantially parallel to the first direction. The shield portions are arranged in mirror symmetry with the brim segments of each of the shield portions extending toward one another.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 16, 2019
    Assignee: NXP B.V.
    Inventors: Stephan Marauska, Jörg Kock, Mark Isler, Harmut Matz, Dennis Helmboldt
  • Publication number: 20190079141
    Abstract: A magnetic field sensor includes a magnetic sense element and a shield structure formed on a substrate. The shield structure fully encircles the magnetic sense element for suppressing stray magnetic fields along a first axis and a second axis, both of which are parallel to a surface of the substrate and perpendicular to one another. A magnetic field is oriented along a third axis perpendicular to the surface of the substrate, and the magnetic sense element is configured to sense a magnetic field along the first axis. A magnetic field deflection element, formed on the substrate proximate the magnetic sense element, redirects the magnetic field from the third axis into the first axis to be sensed as a measurement magnetic field by the magnetic sense element. At least two magnetic field sensors, each fully encircled by a shield structure, form a gradient unit for determining a magnetic field gradient.
    Type: Application
    Filed: September 13, 2017
    Publication date: March 14, 2019
    Inventors: Stephan Marauska, Jörg Kock, Hartmut Matz, Mark Isler, Dennis Helmboldt
  • Publication number: 20190027682
    Abstract: A method includes performing an ion beam etching process on a tunnel magnetoresistance (TMR) stack to remove material portions of a first magnetic layer and a tunnel barrier layer of the TMR stack. The ion beam etching process stops at a top surface of a second magnetic layer of the TMR stack. A protective layer is deposited over the TMR stack. Another etch process is performed to remove the protective layer such that a portion of the second magnetic layer is exposed from the protective layer and a spacer is formed from a remaining portion of the protective layer. The spacer surrounds sidewalls of the first magnetic layer and the tunnel barrier layer. The portion of the second magnetic layer exposed from the protective layer is removed so that a TMR sensor element remains, where the TMR sensor element includes a bottom magnet, a top magnet, and a tunnel junction.
    Type: Application
    Filed: July 18, 2017
    Publication date: January 24, 2019
    Inventors: Mark Isler, Klaus Reimann, Hartmut Matz, Jörg Kock
  • Publication number: 20190018080
    Abstract: A system comprises at least one magnetic field sensor having a magnetic sense element formed on a substrate. The sense element senses a magnetic field along a sense axis oriented in a first direction parallel to a surface of the substrate. A shield structure is formed on the substrate. The shield structure has first and second shield portions and the magnetic sense element is disposed between the shield portions. Each of the shield portions includes a body and first and second brim segments extending from opposing ends of the body. The body is aligned parallel to a second direction perpendicular to the first direction and parallel to the surface of the substrate. The brim segments are aligned substantially parallel to the first direction. The shield portions are arranged in mirror symmetry with the brim segments of each of the shield portions extending toward one another.
    Type: Application
    Filed: July 12, 2017
    Publication date: January 17, 2019
    Inventors: Stephan Marauska, Jörg Kock, Mark Isler, Harmut Matz, Dennis Helmboldt
  • Patent number: 10113886
    Abstract: A method for transmitting a measured value in a data transmission signal, the method including: introduction of the measured value into the data transmission signal; introduction of error information after said measured value into the data transmission signal, from which information it can be deduced whether the measured value contains an error; and introduction of evaluation information which describes the error information into the data transmission signal after the error information, if the measured value contains an error.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: October 30, 2018
    Assignees: Continental Teves AG & Co. oHG, NXP B.V.
    Inventors: Ralf Endres, Jochen Zachow, Andreas Kannengiesser, Jörg Kock, Robert Meyer
  • Patent number: 10006972
    Abstract: A magnetic field sensor is disclosed for providing an output signal in response to an external magnetic field. The sensor comprises a primary magnetic field transducer for producing a primary signal in response to the external magnetic field and having a first magnetic field saturation characteristic; a secondary magnetic field transducer for producing a secondary signal in response to the external magnetic field and having a second magnetic field saturation characteristic. The first magnetic field saturation characteristic is different from the second magnetic field saturation characteristic. The sensor is configured to use the secondary signal to correct for errors in the output signal arising from saturation of the primary transducer.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: June 26, 2018
    Assignee: NXP B.V.
    Inventors: Klaus Reimann, Robert van Veldhoven, Jaap Ruigrok, Selcuk Ersoy, Ralf van Otten, Jörg Kock
  • Publication number: 20170139016
    Abstract: A magnetic field sensor is disclosed for providing an output signal in response to an external magnetic field. The sensor comprises a primary magnetic field transducer for producing a primary signal in response to the external magnetic field and having a first magnetic field saturation characteristic; a secondary magnetic field transducer for producing a secondary signal in response to the external magnetic field and having a second magnetic field saturation characteristic. The first magnetic field saturation characteristic is different from the second magnetic field saturation characteristic. The sensor is configured to use the secondary signal to correct for errors in the output signal arising from saturation of the primary transducer.
    Type: Application
    Filed: November 10, 2016
    Publication date: May 18, 2017
    Inventors: Klaus Reimann, Robert van Veldhoven, Jaap Ruigrok, Selcuk Ersoy, Ralf van Otten, Jörg Kock